Medicinal Chemistry Research
(Triticum aestivum) and cress (Lepidium sativum) as affected by
different clays and organic matter. Green Chem. 2008;10:584–91.
26. Pham TPT, Cho C-W, Yun Y-S. Environmental fate and toxicity
of ionic liquids: a review. Water Res. 2010;44:352–72.
27. Wells AS, Coombe VT. On the freshwater ecotoxicity and bio-
degradation properties of some common ionic liquids. Org Pro-
cess Res Dev. 2006;10:794–8.
28. Bernot RJ, Kennedy EE, Lamberti GA. Effects of ionic liquids on
the survival, movement, and feeding behavior of the freshwater
snail, Physa acuta. Environ Toxicol Chem. 2005;24:1759–65.
29. Swatloski RP, Holbrey JD, Memon SB, Caldwell GA, Caldwell
KA, Rogers RD. Using Caenorhabditis elegans to probe toxicity
of 1-alkyl-3-methylimidazolium chloride based ionic liquids.
ChemComm. 2004;6:668–9.
44. Sudlow G, Birkett DJ, Wade DN. Spectroscopic techniques in the
study of protein binding. A fluorescence technique for the eva-
luation of the albumin binding and displacement of warfarin and
warfarin-alcohol. Clin Exp Pharmacol Physiol. 1975;2:129–40.
45. Huang R, Zhang S, Pan L, Li J, Liu F, Liu H. Spectroscopic
studies on the interactions between imidazolium chloride ionic
liquids and bovine serum albumin. Spectrochim Acta A Mol
Biomol Spectrosc. 2013;104:377–82.
46. Yan H, Wu J, Dai G, Zhong A, Chen H, Yang J, et al. Interaction
mechanisms of ionic liquids [Cnmim] Br (n = 4, 6, 8, 10) with
bovine serum albumin. J Lumin. 2012;132:622–8.
47. Egorova KS, Ananikov VP. Toxicity of ionic liquids: eco (cyto)
activity as complicated, but unavoidable parameter for task-
specific optimization. ChemSusChem. 2014;7:336–60.
30. Costello DM, Brown LM, Lamberti GA. Acute toxic effects of
ionic liquids on zebra mussel (Dreissena polymorpha) survival
and feeding. Green Chem. 2009;11:548–53.
31. Zhang C, Zhu L, Wang J, Wang J, Zhou T, Xu Y, et al. The acute
toxic effects of imidazolium-based ionic liquids with different
alkyl-chain lengths and anions on zebrafish (Danio rerio). Eco-
toxicol Environ Saf. 2017;140:235–40.
32. Li X-Y, Miao X-Q, Zhang L-F, Wang J-J. Immunotoxicity of 1-
methyl-3-octylimidazolium bromide on brocarded carp (Cyprinus
carpio L.). Ecotoxicol Environ Saf. 2012;75:180–6.
33. Li XY, Zeng SH, Zhang WH, Liu L, Ma S, Wang JJ. Acute toxicity
and superficial damage to goldfish from the ionic liquid 1-methyl-3-
octylimidazolium bromide. Environ Toxicol. 2013;28:207–14.
34. Li X-Y, Zhou J, Yu M, Wang J-J, Pei YC. Toxic effects of 1-
methyl-3-octylimidazolium bromide on the early embryonic
development of the frog Rana nigromaculata. Ecotoxicol Environ
Saf. 2009;72:552–6.
48. Bauer A. Antibiotic susceptibility testing by a standardized single
disc method. Am J Clin Pathol. 1966;45:149–58.
49. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new
and rapid colorimetric determination of acetylcholinesterase
activity. Biochem Pharmacol. 1961;7:88–95.
50. Surewicz WK, Mantsch HH, Chapman D. Determination of pro-
tein secondary structure by Fourier transform infrared spectro-
scopy: a critical assessment. Biochemistry. 1993;32:389–94.
51. Sanner MF. Python: a programming language for software inte-
gration and development. J Mol Graph Model. 1999;17:57–61.
52. Berman H, Battistuz T, Bhat T, Bluhm W, Bourne P, Burkhardt
K, et al. The protein data bank. Acta Crystallogr D Biol Crys-
tallogr. 2002;58:899–907.
53. BIOVIA Discovery Studio San Diego: Dassault Systèmes. http://a
54. MarvinSketch Budapest, Hungary: ChemAxon Ltd. http://www.
ber 2016.
35. Landry T, Brooks K, Poche D, Woolhiser M. Acute toxicity
profile of 1-butyl-3-methylimidazolium chloride. Bull Environ
Contam Toxicol. 2005;74:559–65.
55. Stewart JJP. MOPAC2016 colorado springs. CO: Stewart Com-
36. Bailey MM, Townsend MB, Jernigan PL, Sturdivant J, Hough-
Troutman WL, Rasco JF, et al. Developmental toxicity assessment
of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1
mice. Green Chem. 2008;10:1213–7.
37. Arning J, Stolte S, Böschen A, Stock F, Pitner W-R, Welz-
Biermann U, et al. Qualitative and quantitative structure activity
relationships for the inhibitory effects of cationic head groups,
functionalised side chains and anions of ionic liquids on acet-
ylcholinesterase. Green Chem. 2008;10:47–58.
56. Trott O, Olson AJ. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient opti-
mization, and multithreading. J Comput Chem. 2010;31:455–61.
57. Passino DRM, Smith SB. Acute bioassays and hazard evaluation
of representative contaminants detected in Great Lakes fish.
Environ Toxicol Chem. 1987;6:901–7.
58. Material Safety Data Sheet of Cetylpyridinium Chloride, mono-
hydrate according to Regulation (EC) No 1272/2008, 29 CFR
1910.1200 and the Globally Harmonized System. Indianapolis,
IN: Vertellus LLC; 2016.
59. EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion
on the evaluation of the safety and efficacy of Cecure® for the
removal of microbial surface contamination of raw poultry pro-
ducts. EFSA J. 2012;10:2612.
60. Abu Teir M, Ghithan J, Abu-Taha M, Darwish S, Abu-Hadid M.
Spectroscopic approach of the interaction study of ceftriaxone and
human serum albumin. J Biophys Struct Biol. 2014;6:1–12.
61. Cui F, Qin L, Zhang G, Liu X, Yao X, Lei B. A concise
approach to 1, 11-didechloro-6-methyl-4′-O-demethyl rebecca-
mycin and its binding to human serum albumin: Fluorescence
spectroscopy and molecular modeling method. Bioorg Med
Chem. 2008;16:7615–21.
38. Stock F, Hoffmann J, Ranke J, Störmann R, Ondruschka B, Jastorff B.
Effects of ionic liquids on the acetylcholinesterase–a structure–activity
relationship consideration. Green Chem. 2004;6:286–90.
39. Maddali K, Kumar V, Marchand C, Pommier Y, Malhotra SV.
Biological evaluation of imidazolium-and ammonium-based salts
as HIV-1 integrase inhibitors. MedChemComm. 2011;2:143–50.
40. Attri P, Venkatesu P, Kumar A. Activity and stability of α-chymo-
trypsin in biocompatible ionic liquids: enzyme refolding by triethyl
ammonium acetate. Phys Chem Chem Phys. 2011;13:2788–96.
41. Składanowski A, Stepnowski P, Kleszczyński K, Dmochowska B.
AMP deaminase in vitro inhibition by xenobiotics: a potential
molecular method for risk assessment of synthetic nitro-and poly-
cyclic musks, imidazolium ionic liquids and N-glucopyranosyl
ammonium salts. Environ Toxicol Pharmacol. 2005;19:291–6.
42. Ge H-L, Liu S-S, Zhu X-W, Liu H-L, Wang L-J. Predicting
hormetic effects of ionic liquid mixtures on luciferase activity
using the concentration addition model. Environ Sci Technol.
2011;45:1623–9.
62. Gelamo EL, Tabak M. Spectroscopic studies on the interaction of
bovine (BSA) and human (HSA) serum albumins with ionic
surfactants. Spectrochim Acta
A Mol Biomol Spectrosc.
2000;56:2255–71.
63. Liu Y, Cao Z, Wang J, Zong W, Liu R. The interaction
mechanism between anionic or cationic surfactant with HSA by
using spectroscopy, calorimetry and molecular docking methods. J
Mol Liq. 2016;224:1008–15.
43. Kumari M, Maurya JK, Tasleem M, Singh P, Patel R. Probing
HSA-ionic liquid interactions by spectroscopic and molecular
docking methods. J Photochem Photobiol B. 2014;138:27–35.