Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC02448J
COMMUNICATION
Journal Name
VCH: Weinheim, Germany, 1998; Chapter 10; (b) T. Hiyama, E.
Shirakawa, Top. Curr. Chem., 2002, 219, 61; (c) S. E. Denmark, C.
S. Regens, Acc. Chem. Res., 2008, 41, 1486; (d) W. T. T. Chang,
Russell C. Smith, C. S. Regens, A. D. Bailey, N. S. Werner, S. E.
Denmark, Cross-Coupling with Organosilicon Compounds. In
Organic Reactions; S. E. Denmark, Ed; John Wiley & Sons, Inc.
2011; Chapter 3; (e) S. E. Denmark, J. H.-C. Liu, Angew. Chem.
Int. Ed., 2010, 49, 2978; (f) Y. Nakao, T. Hiyama, Chem. Soc. Rev.,
2011, 40, 4893.
In summary, we have completed a convergent total synthesis of
(-)-exiguolide from the known chiral epoxide 2 in 16.8% yield over
19 steps as the longest linear path. The synthesis relies on an
organosilane-based strategy to overcome most synthetic
challenges. Employing the geminal bis(silyl) Prins cyclization allowed
one-step construction of the
A ring with exclusive cis-Z
stereochemical control. silicon-protected RCM reaction
A
substantially improved on the low efficiency of previous efforts to
form the macrocycle. The silyl group persisted as vinylsilane, which
underwent Hiyama-Denmark cross-coupling with vinyliodide to
furnish the triene side chain. Further studies including synthesis and
biological evaluations of (-)-exiguolide analogues are underway.
We are grateful for financial support from the NSFC (21172150,
21321061, 21290180), the NCET (12SCU-NCET-12-03), and the
Sichuan University 985 project.
14. M. J. Gaunt, A. S. Jessiman, P. Orsini, H. R. Tanner, D. F. Hook
and S. V. Ley, Org. Lett., 2003, 5, 4819.
15. A. Fürstner, S. Flügge, O. Larionov, Y. Takahashi, T. Kubota, J.
Kobayashi, Chem. Eur. J., 2009, 15, 4011.
16. D. R. Williams, Á. I. Morales-Ramos, C. M. Williams, Org. Lett.,
2006, 8, 4393.
17. See Supporting Information for detailed synthesis of aldehydes
6a–6d.
18. D. L. J. Clive, K. S. K. Murthy, A. G. H. Wee, J. S. Prasad, G. V. J.
da Silva, M. Majewski, P. C. Anderson, C. F. Evans, R. D. Haugen,
L. D. Heerze, J. R. Barrie, J. Am. Chem. Soc., 1990, 112, 3018. See
Supporting Information for our 3-step synthesis of 7.
19. M. Kurosu, M. H. Lin, Y. Kishi, J. Am. Chem. Soc., 2004, 126,
12248.
20. For Loh’s non-racemic Prins cyclization, see: (a) K. P. Chan, T. P.
Loh, Org. Lett., 2005, 7, 4491. For selected investigations of
Prins cyclization from this group, see: (b) K. P. Chan, Y. H. Ling,
T. P. Loh, Chem. Commun., 2007, 9, 939; (c) F. Liu, T. P. Loh, Org.
Lett., 2007, 9, 2063; (d) X. H. Hu, F. Liu, T. P. Loh, Org. Lett.,
2009, 11, 1741. (e) H. Li, T. P. Loh, Org. Lett., 2010, 12, 2679; (f)
B. Li, Y. C. Lai, Y. J. Zhao, Y. H. Wong, Z. L. Shen, T. P. Loh, Angew.
Chem. Int. Ed., 2012, 51, 10619.
21. Prins cyclization sometimes suffers from partial racemization via
an oxonia-Cope rearrangement. For the related studies, see: (a)
S. R. Crosby, J. R. Harding, C. D. King, G. D. Parker, C. L. Willis,
Org. Lett., 2002, 4, 577; (b) R. Jasti, S. D. Rychnovsky, J. Am.
Chem. Soc., 2006, 128, 13640.
22. For Rychnovsky’s non-racemic Prins cyclization, see: (a) S.
Marumoto, J. J. Jaber, J. P. Vitale, S. D. Rychnovsky, Org. Lett.,
2002, 4, 3919. For recent advances of Prins cyclization from this
group, see: (b) V. Malathong, S. D. Rychnovsky, Org. Lett., 2009,
11, 4220; (c) M. R. Gesinski, S. D. Rychnovsky, J. Am. Chem. Soc.,
2011, 133, 9727; (d) G. C. Tay, M. R. Gesinski, S. D. Rychnovsky,
Org. Lett., 2013, 15, 4536; (e) G. C. Tay, C. Y. Huang, S. D.
Rychnovsky, J. Org. Chem., 2014, 79, 8733.
Notes and references
1. S. Ohta, M. M. Uy, M. Yanai, E. Ohta, T. Hirata, S. Ikegami,
Tetrahedron Lett., 2006, 47, 1957.
2. (a) A. Ransick, J. P. Rast, T. Minokawa, C. Calestani, E. H.
Davidson, Dev. Biol., 2002, 246, 132; (b) X. Wang, T. Feng, L.
Yang, C. Liu, X. Meng, X. Qiu, Conserv. Genet., 2009, 10, 729.
3. (a) E. A. Crane, T. P. Zabawa, R. L. Farmer, K. A. Scheidt, Angew.
Chem. Int. Ed., 2011, 50, 9112; (b) H. Fuwa, T. Suzuki, H. Kubo,
T. Yamori, M. Sasaki, Chem. Eur. J., 2011, 17, 2678; (c) H. Fuwa,
K. Mizunuma, M. Sasaki, T. Suzuki, H. Kubo, Org. Biomol.
Chem., 2013, 11, 3442.
4. J. Cossy, C. R. Chim., 2008, 11, 1477.
5. For the isolation of bryostatin 1, see: (a) G. R. Pettit, C. L.
Herald, D. L. Doubek, D. L. Herald, E. Arnold, J. Clardy, J. Am.
Chem. Soc., 1982, 104, 6846. For the latest review on the
bryostatins, see: (b) K. J. Hale, S. Manaviazar, Chem. Asian J.,
2010, 5, 704. For the latest total synthesis of bryostatins, see: (c)
Y. Lu, S. K. Woo, M. J. Krische, J. Am. Chem. Soc., 2011, 133,
13876 and references therein.
6. For total synthesis of exiguolide, see: ref. 3a, 3b and (a) M. S.
Kwon, S. K. Woo, S. W. Na, E. Lee, Angew. Chem. Int. Ed., 2008,
47, 1733; (b) H. Fuwa, M. Sasaki, Org. Lett., 2010, 12, 584; (c) C.
Cook, X. Guinchard, F. Liron, E. Roulland, Org. Lett., 2010, 12,
744; (d) C. Cook, F. Liron, X. Guinchard, E. Roulland, J. Org.
Chem., 2012, 77, 6728. For other synthetic studies, see: (e) C. R.
Reddy, N. N. Rao, RSC Adv., 2012, 2, 7724.
23. For selected examples: (a) S. D. Rychnovsky, S. Marumoto, J. J.
Jaber, Org. Lett., 2001, 3, 3815; (b) T. P. Loh, C. L. K. Lee, K. T.
Tan. Org. Lett., 2002, 4, 2985.
7. For the latest synthetic advance, see: (a) Y. Ogawa, P. P. Painter,
D. J. Tantillo, P. A. Wender, J. Org. Chem., 2013, 78, 104; For a
review, see: (b) L. Gao, J. Lu, Z. L. Song, Chem. Commun., 2013,
49, 10211.
24. H. Zhou, T. P. Loh, Tetrahedron Lett., 2009, 50, 4368.
25. D. B. Dess, J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277.
26. B. S. Bal, W. E. Childers, H. W. Pinnick, Tetrahedron, 1981, 37,
2091.
8. K. Tanaka, K. Otsubo, K. Fuji, Tetrahedron Lett., 1996, 37, 3735.
9. (a) B. M. Trost, H. B. Yang, G. Wuitschik, Org. Lett., 2005, 7,
4761; (b) B. M. Trost, G. Dong, Nature, 2008, 456, 485; (c) B. M.
Trost, G. Dong, J. Am. Chem. Soc., 2010, 132, 16403.
10. J. Lu, Z. L. Song, Y. B. Zhang, Z. B. Gan, H. Z. Li, Angew. Chem. Int.
Ed., 2012, 51, 5367.
27. S. E. Denmark, S. Fujimori, J. Am. Chem. Soc., 2005, 127, 8971.
28. D. A. Evans , J. V. Nelson , E. Vogel , T. R. Taber, J. Am. Chem.
Soc., 1981, 103, 3099.
29. (a) A. Basha, M. Lipton, S. M. Weinreb, Tetrahedron Lett., 1977,
18, 4171; (b) D. A. Evans, S. L. Bender, J. Morris, J. Am. Chem.
Soc., 1988, 110, 2506.
11. For the latest reviews on the Prins cyclization, see: (a) E. A.
Crane, K. A. Scheidt, Angew. Chem. Int. Ed., 2010, 49, 8316; (b)
X. Han, G. R. Peh, P. E. Floreancig, Eur. J. Org. Chem., 2013, 7,
1193.
12. For the latest reviews on RCM reactions, see: (a) D. J. Nelson, S.
Manzini, C. A. Urbina-Blanco, S. P. Nolan, Chem. Commun.,
2014, 50, 10355; (b) A. H. Hoveyda, J. Org. Chem., 2014, 79,
4763.
30. S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am.
Chem. Soc., 2000, 122, 8168.
31. B. M. Trost, M. R. Machacek, Z. T. Ball, Org. Lett., 2003, 5, 1895.
32. Vinyliodide fragments 23-25 are known compounds, which have
been used in previous total synthesis of exiguolide (ref. 3a and
6a). See Supporting Information for our modified synthesis.
33. Copper (I) has been proposed to accelerate the transmetalation
step in Hiyama-Denmark cross-coupling. For related discussions,
(a) K. Ikegashira, Y. Nishihara, K. Hirabayashi, A. Mori, T.
Hiyama, Chem. Commun., 1997, 1039; (b) S. E. Denmark, T.
Kobayashi, J. Org. Chem., 2003, 68, 5153.
13. For selected reviews, see: (a) Hiyama, T. Organosilicon
Compounds in Cross-coupling Reactions. In Metal-Catalyzed
Cross-Coupling Reactions; F. Diederich, P. J. Stang, Eds.; Wiley-
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins