its concentration to be constant during the reaction.12 As
expected, a good linear correlation of ln(A) versus time was
obtained (Fig. S17, ESIw), and the kinetic reaction rate con-
Science, 2002, 298, 2176–2179; (c) Y. Khalavka, J. Becker and
C. Sonnichsen, J. Am. Chem. Soc., 2009, 131, 1871–1875;
(d) F. Muench, U. Kunz, C. Neetzel, S. Lauterbach, H.-J.
Kleebe and W. Ensinger, Langmuir, 2011, 27, 430–435.
5 Y. Liu, K. B. Male, P. Bouvrette and J. H. T. Luong, Chem.
Mater., 2003, 15, 4172–4180.
stant was estimated to be 8.34 Â 10À3
s
À1. The catalytic
activity of the GNPsÀis possibly due to efficient electron
transfer from the BH4 anion to nitro compounds mediated
by the large Fermi level shift of nanoparticles.13 As shown in
Fig. S21 (ESIw), the catalytic reduction is carried out on the
surface of the GNPs: the nanoparticles react with the boro-
hydride ions to form the metal hydride. Subsequently,
nitroaniline molecules adsorb onto the metal surface. The
adsorption/desorption of both reagents on the surface is fast
and can be modelled in terms of a Langmuir isotherm.14
When the same experiment was conducted with GNPs of
3.09 Æ 0.79 nm, 3.86 Æ 0.91 nm and 5.95 Æ 1.64 nm, the rate
constants were estimated to be 5.73 Â 10À3 sÀ1, 2.72 Â 10À3 sÀ1
6 (a) C. Vollmer and C. Janiak, Coord. Chem. Rev., 2011, 255,
2039–2057; (b) J. Dupont and J. D. Scholten, Chem. Soc. Rev.,
2010, 39, 1780–1804; (c) B. Kim, S. L. Tripp and A. Wei, J. Am.
Chem. Soc., 2001, 123, 7955–7956; (d) H.-M. Song, Q. Wei,
Q. K. Ongand and A. Wei, ACS Nano, 2010, 4, 5163–5173.
7 (a) A. C. Templeton, M. J. Hostetler, C. T. Kraft and
R. W. Murray, J. Am. Chem. Soc., 1998, 120, 1906–1911;
(b) X. Y. Chen, J. R. Li and L. Jiang, Nanotechnology, 2000, 11,
108–111; (c) I. Hussain, M. Brust, A. J. Papworth and
A. I. Cooper, Langmuir, 2003, 9, 4831–4835; (d) J. Zhang,
H. Liu, Z. Wang and N. Ming, Adv. Funct. Mater., 2007, 17,
3295–3303.
8 (a) T. Ogoshi, S. Kanai, S. Fujinami, T. A. Yamagishi and
Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022–5023;
(b) P. J. Cragg and K. Sharma, Chem. Soc. Rev., 2012, 41, 597–607.
9 (a) D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier,
Angew. Chem., Int. Ed., 2009, 48, 9721–9723; (b) T. Ogoshi,
K. Kitajima, T. Aoki, S. Fujinami, T. Yamagishi and
Y. Nakamoto, J. Org. Chem., 2010, 75, 3268–3273; (c) Z. Zhang,
B. Xia, C. Han, Y. Yu and F. Huang, Org. Lett., 2010, 12,
3285–3287; (d) C. Han, F. Ma, Z. Zhang, B. Xia, Y. Yu and
F. Huang, Org. Lett., 2010, 12, 4360–4363; (e) C. Li, L. Zhao, J. Li,
X. Ding, S. Chen, Q. Zhang, Y. Yu and X. Jia, Chem. Commun.,
2010, 46, 9016–9018; (f) Z. Zhang, Y. Luo, B. Xia, C. Han, Y. Yu,
X. Chen and F. Huang, Chem. Commun., 2011, 47, 2417–2419;
(g) C. Li, X. Shu, J. Li, S. Chen, K. Han, M. Xu, B. Hu, Y. Yu and
X. Jia, J. Org. Chem., 2011, 76, 8458–8465; (h) X.-B. Hu, L. Chen,
W. Si, Y. H. Yu and J.-L. Hou, Chem. Commun., 2011, 47,
4694–4696; (i) C. Li, S. Chen, J. Li, K. Han, M. Xu, B. Hu,
Y. Yu and X. Jia, Chem. Commun., 2011, 47, 11294–11296;
(j) Y. Ma, X. Ji, F. Xiang, X. Chi, C. Han, J. He, Z. Abliz,
W. Chen and F. Huang, Chem. Commun., 2011, 47, 12340–12342;
(k) Y. Ma, Z. Zhang, X. Ji, C. Han, J. He, Z. Abliz, W. Chen and
F. Huang, Eur. J. Org. Chem., 2011, 5311–5335; (l) B. Xia, J. He,
Z. Abliz, Y. Yu and F. Huang, Tetrahedron Lett., 2011, 52,
4433–4436; (m) Z. Zhang, Y. Luo, J. Chen, S. Dong, Y. Yu,
Z. Ma and F. Huang, Angew. Chem., Int. Ed., 2011, 50, 1397–1401;
(n) W. Si, L. Chen, X.-B. Hu, G. Tang, Z. Chen, J.-L. Hou and
Z.-T. Li, Angew. Chem., Int. Ed., 2011, 50, 12564–12568;
(o) Z. Zhang, G. Yu, C. Han, J. Liu, X. Ding, Y. Yu and
F. Huang, Org. Lett., 2011, 13, 4818–4821; (p) N. L. Strutt,
R. S. Forgan, J. M. Spruell, Y. Y. Botros and J. F. Stoddart,
J. Am. Chem. Soc., 2011, 133, 5668–5671; (q) L. Liu, D. Cao,
Y. Jin, H. Tao, Y. Kou and H. Meier, Org. Biomol. Chem., 2011, 9,
7007–7010; (r) M. Holler, N. Allenbach, J. Sonet and
J.-F. Nierengarten, Chem. Commun., 2012, 48, 2576–2578;
(s) C. Li, K. Han, J. Li, H. Zhang, J. Ma, X. Shu, Z. Chen,
L. Weng and X. Jia, Org. Lett., 2012, 14, 42–45; (t) G. Yu,
Z. Zhang, C. Han, M. Xue, Q. Zhou and F. Huang, Chem.
Commun., 2012, 48, 2958–2960; (u) X. Shu, S. Chen, J. Li,
Z. Chen, L. Weng, X. Jia and C. Li, Chem. Commun., 2012, 48,
2967–2969; (v) T. Ogoshi, R. Shiga and T.-a. Yamagishi, J. Am.
Chem. Soc., 2012, 134, 4577–4580; (w) Y. Ma, X. Chi, X. Yan,
J. Liu, Y. Yao, W. Chen, F. Huang and J.-L. Hou, Org. Lett.,
2012, 14, 1532–1535; (x) C. Han, G. Yu, B. Zheng and F. Huang,
Org. Lett., 2012, 14, 1712–1715.
and 8.17 Â 10À4
s
À1, respectively, indicating that the
smaller GNPs were more efficient in catalyzing the reaction
(Fig. S18–S20, ESIw).
In conclusion, we have successfully synthesized a new water-
soluble pillar[5]arene 1 with ten imidazolium groups at its two
rims. When 1 was used as the stabilizer at very low concentra-
tions, GNPs smaller than 6 nm were prepared in aqueous
solution. It was found that the average particle size of the
AuNPs stabilized by 1 decreased with increasing molar ratio of
[pillar[5]arene]/[Au3+], and their standard deviations also
became smaller. Since this water-soluble pillar[5]arene con-
tains only weakly coordinating cations and anions that bind
feebly to the gold surface, the plasmon resonance of the gold
nanoparticles stabilized by it shows greater sensitivity than
that of the gold nanoparticles stabilized by the commonly
employed capping or protective ligands, and thus the obtained
gold nanoparticle catalysts are of superior activity (Table S1,
ESIw). The present study provided a potential application of
pillar[n]arenes in the catalysis industry.
This work was supported by the National Natural Science
Foundation of China (20834004, 91027006, and 21172166),
the Fundamental Research Funds for the Central Universities
(2012QNA3013), National Basic Research Program
(2009CB930104), and Zhejiang Provincial Natural Science
Foundation of China (R4100009).
Notes and references
1 (a) H. Dai, E. W. Wong and C. M. Lieber, Science, 1996, 272,
523–526; (b) Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen,
X. Sun, X. Chen and H. Dai, Nat. Nanotechnol., 2007, 2, 47–52;
(c) Q. Zhang, N. Li, J. Goebl, Z. Lu and Y. Yin, J. Am. Chem.
Soc., 2011, 133, 18931–18939; (d) C. Gao, Z. Lu and Y. Yin,
Langmuir, 2011, 27, 12201–12208; (e) Y. Sun and Y. Xia, Adv.
Mater., 2002, 14, 833–837; (f) L.-I. Hung, C.-K. Tsung, W. Huang
and P. Yang, Adv. Mater., 2010, 22, 1910–1914; (g) Y. Sun,
Y. Yao, C.-G. Yan, Y. Han and M. Shen, ACS Nano, 2010, 4,
2129–2141; (h) C.-K. Tsung, J. N. Kuhn, W. Huang, C. Aliaga,
L.-I. Hung, G. A. Somorjai and P. Yang, J. Am. Chem. Soc., 2009,
131, 5816–5822.
10 S. Link and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103,
4212–4217.
11 Y. Yuan, N. Yan and P. J. Dyson, Inorg. Chem., 2011, 50,
11069–11074.
12 (a) J. Zeng, Q. Zhang, J. Chen and Y. Xia, Nano. Lett., 2010, 10,
30–35; (b) M. H. Rashid and T. K. Mandal, Adv. Funct. Mater.,
2008, 18, 2261–2271; (c) M. A. Mahmoud, F. Saira and M. A.
El-Sayed, Nano. Lett., 2010, 10, 3764–3769.
2 (a) Y. Cui, Q. Wei, H. Park and C. M. Lieber, Science, 2001, 293,
1289–1292; (b) J. Han, Y. Liu and R. Guo, J. Am. Chem. Soc.,
2009, 131, 2060–2061.
3 (a) E. Katz and I. Willner, J. Am. Chem. Soc., 2002, 124,
10290–10291; (b) C. Kim, S. S. Agasti, Z. Zhu, L. Isaacs and
V. M. Rotello, Nat. Chem., 2010, 2, 962–966.
13 (a) M. Jakob and H. Levanon, Nano Lett., 2003, 3,
353–358; (b) I. Mora-Sero and J. Bisquert, Nano Lett., 2003, 3,
945–949.
4 (a) J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu and
H. Yan, Science, 2009, 323, 112–116; (b) Y. Sun and Y. Xia,
14 S. Wunder, F. Polzer, Y. Lu, Y. Mei and M. Ballauff, J. Phys.
Chem. C, 2010, 114, 8814–8820.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 6505–6507 6507