Journal of the American Chemical Society
Article
fabricated in a nitrogen-filled glovebox. Pyrene-O-propyl-NH3I and
lead iodide were dissolved at a 2:1 molar ratio in a 25 wt % solvent
mixture of 50 vol % DMF/50 vol % DMSO and heated for 30 min at
65 °C. For optimized (pyrene-O-propyl-NH3)2PbI4 devices, the active
layer was spin-cast onto PEDOT:PSS-coated, patterned ITO
substrates for 40 s at 4000 rpm with a ramp time of 7 s. The active
layer was then annealed for 1 min at 140 °C. 50 nm silver contacts
were thermally evaporated onto the substrates at a pressure of <10−6
mbar using a shadow mask to define 4 mm2 devices. More details
about the device fabrication have been included in ST 2. Finally,
devices were tested in air on a Newport solar simulator with a Keithley
2400 sourcemeter with a voltage ramp rate of 0.2 V/s.
Resource (NSF ECCS-1542205); the State of Illinois and
International Institute for Nanotechnology (IIN). This work
made use of the EPIC, Keck-II, and SPID facilities of
Northwestern University’s NUANCE Center, which has
received support from the Soft and Hybrid Nanotechnology
Experimental (SHyNE) Resource (NSF ECCS-1542205); the
MRSEC program (DMR-1720139) at the Materials Research
Center; the International Institute for Nanotechnology (IIN);
the Keck Foundation; and the State of Illinois, through the IIN.
This work made use of the J. B. Cohen X-ray Diffraction
Facility supported by the MRSEC program of the National
Science Foundation (DMR-1720139) at the Materials Research
Center of Northwestern University [LCP1]. This work made
use of the Northwestern University Micro/Nano Fabrication
Facility (NUFAB), which is partially supported by Soft and
Hybrid Nanotechnology Experimental (SHyNE) Resource
(NSF ECCS-1542205), the Materials Research Science and
Engineering Center (NSF DMR-1720139), the State of Illinois,
and Northwestern University. This research used resources of
the Advanced Photon Source, a U.S. Department of Energy
(DOE) Office of Science User Facility operated for the DOE
office of Science by Argonne National Laboratory under
Contract No. DE-AC02-06CH11357.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
X-ray crystallographic data for (naphthalene-O-ethyl-
X-ray crystallographic data for (naphthalene-O-propyl-
X-ray crystallographic data for (naphthalene-O-propyl-
NH3)2PbI4·(C4H6O2)0.5 (CIF)
X-ray crystallographic data for (pyrene-O-ethyl-
X-ray crystallographic data for (pyrene-O-propyl-
X-ray crystallographic data for (pyrene-O-butyl-
X-ray crystallographic data for (perylene-O-ethyl-
Synthetic details, characterization, experimental details,
and additional figures as described in the text (PDF)
REFERENCES
■
(1) Tsai, H.; Nie, W.; Blancon, J. C.; Stoumpos, C. C.; Asadpour, R.;
Harutyunyan, B.; Neukirch, A. J.; Verduzco, R.; Crochet, J. J.; Tretiak,
S.; Pedesseau, L.; Even, J.; Alam, M.; Gupta, G.; Lou, J.; Ajayan, P.;
Bedzyk, M.; Kanatzidis, M.; Mohite, A. Nature 2016, 536 (7616),
312−317.
(2) Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.;
Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137 (24), 7843−7850.
(3) Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.;
Karunadasa, H. I. Angew. Chem., Int. Ed. 2014, 53 (42), 11232−11235.
(4) Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; Young, J.; Rondinelli, J.
M.; Jang, J. I.; Hupp, J. T.; Kanatzidis, M. G. Chem. Mater. 2016, 28
(8), 2852−2867.
(5) Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116 (7), 4558−4596.
(6) Tanaka, K.; Sano, F.; Takahashi, T.; Kondo, T.; Ito, R.; Ema, K.
Solid State Commun. 2002, 122 (5), 249−252.
(7) Zhang, S.; Lanty, G.; Lauret, J. S.; Deleporte, E.; Audebert, P.;
Galmiche, L. Acta Mater. 2009, 57 (11), 3301−3309.
(8) Ishihara, T.; Takahashi, J.; Goto, T. Solid State Commun. 1989, 69
(9), 933−936.
(9) Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W. Angew. Chem., Int.
Ed. 2017, 56 (5), 1190−1212.
(10) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena,
J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.;
Hagfeldt, A.; Gratzel, M. Energy Environ. Sci. 2016, 9 (6), 1989−1997.
(11) Li, Z.; Yang, M.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K.
Chem. Mater. 2016, 28 (1), 284−292.
(12) Mao, L.; Tsai, H.; Nie, W.; Ma, L.; Im, J.; Stoumpos, C. C.;
Malliakas, C. D.; Hao, F.; Wasielewski, M. R.; Mohite, A. D.;
Kanatzidis, M. Chem. Mater. 2016, 28 (21), 7781−7792.
(13) Safdari, M.; Svensson, P. H.; Hoang, M. T.; Oh, I.; Kloo, L.;
Gardner, J. M. J. Mater. Chem. A 2016, 4 (40), 15638−15646.
(14) Smith, M. D.; Pedesseau, L.; Kepenekian, M.; Smith, I. C.;
Katan, C.; Even, J.; Karunadasa, H. I. Chem. Sci. 2017, 8 (3), 1960−
1968.
AUTHOR INFORMATION
Corresponding Author
ORCID
■
Notes
The authors declare no competing financial interest.
∇J.V.P. and D.J.F. contributed equally.
ACKNOWLEDGMENTS
■
This work was primarily supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences, under award
no. DE- FG02-00ER45810. Work on single-crystal conductivity
measurements was supported by the Air Force Research
Laboratory under agreement number FA8650-15-2-5518.
N.A.S. was supported by the Department of Defense (DoD),
Air Force Office of Scientific Research, through the National
Defense Science and Engineering Graduate (NDSEG) Fellow-
ship, 32 CFR 168a. N.A.S. and J.V.P. also acknowledge support
from Northwestern University through a Ryan Fellowship. We
would like to thank Michelle Chen for photoluminescence
measurements. This work made use of the IMSERC at
Northwestern University, which has received support from
the Soft and Hybrid Nanotechnology Experimental (SHyNE)
(15) Smith, I. C.; Smith, M. D.; Jaffe, A.; Lin, Y.; Karunadasa, H. I.
Chem. Mater. 2017, 29 (5), 1868−1884.
(16) Solis-Ibarra, D.; Smith, I. C.; Karunadasa, H. I. Chem. Sci. 2015,
6 (7), 4054−4059.
(17) Mitzi, D. B.; Chondroudis, K.; Kagan, C. R. Inorg. Chem. 1999,
38 (26), 6246−6256.
J
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX