Monoclonal Antibodies to Nicarbazin
J. Agric. Food Chem., Vol. 49, No. 10, 2001 4551
(
18) Michielli, R. F.; Downing, G. V., J r. Differential pulse
polarographic determination of nicarbazin in chicken
tissue. J . Agric. Food Chem. 1974, 22, 449-452.
(34) Muldoon, M. T.; Font, I. A.; Beier, R. C.; Holtzapple, C.
K.; Young, C. R.; Stanker, L. H. Development of a cross-
reactive monoclonal antibody to sulfonamide antibiot-
ics: Evidence for structural conformation-selective hap-
ten recognition. Food Agric. Immunol. 1999, 11, 117-
134.
(
19) Wood, J . S., J r.; Downing, G. V. Modified pulse polaro-
graphic determination of nicarbazin in chicken tissue
at the 0.1-ppm level. J . Agric. Food Chem. 1980, 28,
4
52-454.
(35) Beier, R. C.; Stanker, L. H. 4,4′-Dinitrocarbanilides
hapten development utilizing molecular models. Anal.
Chim. Acta 1998, 376, 139-143.
(
20) Macy, T. D.; Loh, A. Liquid chromatographic determi-
nation of nicarbazin in feeds and premixes. J . Assoc. Off.
Anal. Chem. 1984, 67, 1115-1117.
21) Dusi, G.; Faggionato, E.; Gamba, V.; Baiguera, A.
Determination of nicarbazin and clopidol in poultry
feeds by liquid chromatography. J . Chromatogr. A, 2000,
(36) Rose, B. G.; Buckley, S. A.; Kamps-Holtzapple, C.; Beier,
R. C.; Stanker, L. H. Molecular modeling studies of
ceftiofur: A tool for hapten design and monoclonal
antibody production. In Immunoassays for Residue
Analysis: Food Safety. Beier, R. C., Stanker, L. H., Eds.;
ACS Symposium Series 586; American Chemical Soci-
ety: Washington, D. C., 1996; pp 82-98.
(
8
82, 79-84.
(
22) Parks, O. W. Rapid procedure for determination of
nicarbazin residues in chicken tissues. J . Assoc. Off.
Anal. Chem. 1988, 71, 778-780.
23) Lewis, J . L.; Macy, T. D.; Garteiz, D. A. Determination
of nicarbazin in chicken tissues by liquid chromatogra-
phy and confirmation of identity by thermospray liquid
chromatography/mass spectrometry. J . Assoc. Off. Anal.
Chem. 1989, 72, 577-581.
24) Schenck, F. J .; Barker, S. A.; Long, A. R. Matrix solid-
phase dispersion extraction and liquid chromatographic
determination of nicarbazin in chicken tissue. J . AOAC
Intern. 1992, 75, 659-662.
25) Leadbetter, M. G.; Matusik, J . E. Liquid chromato-
graphic determination and liquid chromatographic-
thermospray mass spectrometric confirmation of nicar-
bazin in chicken tissues: Interlaboratory study. J .
AOAC Int. 1993, 76, 420-423.
26) Bradfield, K. B.; Forbes, R. A. Development and valida-
tion of an analytical method for identification of granu-
lated nicarbazin by near infrared reflectance spectros-
copy. J . Near Infrared Spectrosc. 1997, 5, 41-65.
27) Matabudul, D. K.; Crosby, N. T.; Sumar, S. A new and
rapid method for the determination of nicarbazin resi-
dues in poultry feed, eggs and muscle tissue using
supercritical fluid extraction and high performance
liquid chromatography. Analyst 1999, 124, 499-502.
28) Blanchflower, W. J .; Hughes, P. J .; Kennedy, D. G.
Determination of nicarbazin in eggs by liquid chroma-
tography-atmospheric pressure chemical ionization mass
spectrometry. J . AOAC Int. 1997, 80, 1177-1182.
29) Carlin, R. J .; Kamps-Holtzapple, C.; Stanker, L. H.
Characterization of monoclonal anti-furosemide anti-
bodies and molecular modeling studies of cross-reactive
compounds. Mol. Immunol. 1994, 31, 153-164.
(37) Beier, R. C.; Stanker, L. H. Molecular models for the
(
stereochemical structures of fumonisin B
1 2
and B . Arch.
Environ. Contam. Toxicol. 1997, 33, 1-8.
(38) Beier, R. C.; Stanker, L. H. Application of immunoassay
for detection of antibiotics in foods and feed: A review.
Recent Res. Dev. Agric. Food Chem. 2000, 4, 59-93.
(39) Beier, R. C.; Stanker, L. H. An antigen based on
molecular modeling resulted in the development of a
monoclonal-antibody-based immunoassay for the coc-
cidiostat nicarbazin. Anal. Chim. Acta 2001, in press.
(40) Staros, J . V.; Wright, R. W.; Swingle, D. M. Enhance-
ment by N-hydroxysulfosuccinimide of water-soluble
carbodiimide-mediated coupling reactions. Anal. Bio-
chem. 1986, 156, 220-222.
(41) Elissalde, M. H.; Beier, R. C.; Rowe, L. D.; Stanker, L.
H. Development of a monoclonal-based enzyme-linked
immunosorbent assay for the coccidiostat salinomycin.
J . Agric. Food Chem. 1993, 41, 2167-2171.
(42) Stanker, L. H.; Branscomb, E.; Vanderlaan, M.; J ensen,
R. H. Monoclonal antibodies recognizing single amino
acid substitutions in hemoglobin. J . Immunol. 1986,
136, 4174-4180.
(
(
(
(
(43) Bigbee, W. L.; Vanderlaan, M.; Fong, S. S.; J ensen, R.
H. Monoclonal antibodies specific for the M- and N-
forms of human glycophorin A. Mol. Immunol. 1983, 20,
1353-1362.
(
(
(
(44) Falkenberg, F. W.; Weichert, H.; Krane, M.; Bartels, I.;
Palme, M.; Nagels, H.-O.; Fiebig, H. In vitro production
of monoclonal antibodies in high concentration in a new
and easy to handle modular minifermenter. J . Immunol.
Methods 1995, 179, 13-29.
(45) Falkenberg, F. W. Production of monoclonal antibodies
TM
30) Elissalde, M. H.; Kamps-Holtzapple, C.; Beier, R. C.;
Plattner, R. D.; Rowe, L. D., Stanker, L. H. Development
of an improved monoclonal antibody-based ELISA for
fumonisin B1-3 and the use of molecular modeling to
explain observed detection limits. Food Agric. Immunol.
in the miniPERM bioreactor: Comparison with other
hybridoma culture methods. Res. Immunol. 1998, 149,
560-570.
(46) Li, Q. X.; Zhao, M. S.; Gee, S. J .; Kurth, M. J .; Seiber,
J . N.; Hammock, B. D. Development of enzyme-linked
immunosorbent assays for 4-nitrophenol and substituted
4-nitrophenols. J . Agric. Food Chem. 1991, 39, 1685-
1692.
(47) Greirson, B. N.; Allen, D. G.; Gare, N. F.; Watson, I. M.
Development and application of an enzyme-linked im-
munosorbent assay for lupin alkaloids. J . Agric. Food
Chem. 1991, 39, 2327-2331.
(48) Li, K.; Chen, R.; Zhao, B.; Liu, M.; Karu, A. E.; Roberts,
V. A.; Li, Q. X. Monoclonal antibody-based ELISAs for
part-per-billion determination of polycyclic aromatic
hydrocarbons: Effects of haptens and formats on sen-
sitivity and specificity. Anal. Chem. 1999, 71, 302-
309.
1
995, 7, 109-122.
(
31) Stanker, L. H.; Recinos, A., III.; Linthicum, D. S.
Antidioxin monoclonal antibodies: Molecular modeling
of cross-reactive congeners and the antibody combining
site. In Immunoanalysis of Agrochemicals: Emerging
Technologies; Nelson, J . O.; Karu, A. E.; Wong, R. B.,
Eds.; ACS Symposium Series 586; American Chemical
Society: Washington, D. C., 1995; pp 72-88.
(
32) Holtzapple, C. K.; Carlin, R. J .; Rose, B. G.; Kubena, L.
F.; Stanker, L. H. Characterization of monoclonal an-
tibodies to aflatoxin M
of related aflatoxins. Mol. Immunol. 1996, 33, 939-
46.
1
and molecular modeling studies
9
(
33) Holtzapple, C. K.; Buckley, S. A.; Stanker, L. H. Produc-
tion and characterization of monoclonal antibodies
against sarafloxacin and cross-reactivity studies of
related fluoroquinonlones. J . Agric. Food Chem. 1997,
(49) Watanabe, E.; Watanabe, S.; Ito, S.; Hayashi, M.;
Watanabe, T.; Yuasa, Y.; Nakazawa, H. Development
of an enzyme-linked immunosorbent assay for the
fungicide imazalil in citrus fruits. J . Agric. Food Chem.
2000, 48, 5124-5130.
4
5, 1984-1990.