Table 2 Oxidation of various alcoholsa
Entry
Alcohol
Product
T/1C
t/h
1.5
10
3
10
3
14
3
2
2
24
24
Conv.b (%)
Yieldb (%)
1c
2c
3
PhCH2OH
PhCHO
30
30
30
30
30
30
60
100
100
30
100
7
80
3
88
90
91
100
82
100
67
99
6
80(78)
2
87(83)
90
91
100(94)
81(80)
>99
64
4-MeO–C6H4CH2OH
4-MeO–C6H4CH2OH
3-MeO–C6H4CH2OH
3-MeO–C6H4CH2OH
2-MeO–C6H4CH2OH
4-Me–C6H4CH2OH
4-NO2–C6H4CH2OH
2-NO2–C6H4CH2OH
PhCH(OH)CH3
4-MeO–C6H4CHO
4-MeO–C6H4CHO
3-MeO–C6H4CHO
3-MeO–C6H4CHO
2-MeO–C6H4CHO
4-Me–C6H4CHO
4-NO2–C6H4CHO
2-NO2–C6H4CHO
PhC(O)CH3
4c
5
6
7
8
9
10
11
PhCH(OH)Ph
PhC(O)Ph
100
12
13
30
30
4
100
100
98
98
12
14
30
24
73
71
a
b
Reaction conditions: alcohol (1.93 mmol), [Imim-TEMPO][FeCl4] (5 mol%), NaNO2 (5 mol%), H2O (0.3 mL), O2 (0.2 MPa). Determined by
c
GC, values in parentheses refer to isolated yields. In the absence of H2O.
materials with great potential applications. Further studies on
mechanistic investigations and the use of a magnet to recover
magnetic ILs are in progress and will be reported in due
course.
Macromolecules, 2008, 41, 2886; (c) L. Li, Y. Huang, G. P. Yan,
F. J. Liu, Z. L. Huang and Z. B. Ma, Mater. Lett., 2009, 63, 8;
(d) S. M. Shang, L. Li, X. M. Yang and L. Zheng, J. Colloid Interface
Sci., 2009, 333, 415; (e) F. H. Cao, L. Tian, N. J. Luo, D. Y. Fang,
W. Y. Ying and J. A. Wang, Catal. Commun., 2009, 10, 1310.
11 R. Giernoth, Angew. Chem., 2010, 122, 2896 (Angew. Chem., Int.
Ed., 2010, 49, 2834).
12 (a) S. J. Zhang, X. M. Lu and Q. Zhou, et al., Ionic Liquids:
Physicochemical Properties, Elsevier, 2009; (b) S. J. Zhang,
X. M. Lu and Y. Q. Zhang, et al., Ionic Liquids and Relative
Process Design, Springer, Berlin, 2007; (c) Y. Q. Zhang,
S. J. Zhang, Q. Zhou, X. M. Lu, W. Fan and X. P. Zhang,
Chem.–Eur. J., 2009, 15, 3003; (d) G. R. Yu, S. J.
Zhang, G. H. Zhou, X. M. Liu and X. C. Chen, AIChE J.,
2007, 53, 3210; (e) C. X. Miao, L. N. He, J. Q. Wang and
J. L. Wang, Adv. Synth. Catal., 2009, 351, 2209; (f) C. X.
Miao, L. N. He, J. L. Wang and F. Wu, J. Org. Chem., 2010,
75, 257.
13 (a) X. E. Wu, L. Ma and M. X. Gao, Synlett, 2005, 607;
(b) W. X. Qian, E. L. Jin, W. L. Bao and Y. M. Zhang, Tetra-
hedron, 2006, 62, 556; (c) T. D. Lee and J. F. Keana, J. Org. Chem.,
1975, 40, 3145.
14 Catalyst recycling. Conversion and yield of acetophenone: run 1,
100% and 99.6%; run 2, 99.7% and 98.4%; run 3, 94.2% and
93.9%; run 4 (when NaNO2 was not replenished), 0% and 0%; run
5, 92.1% and 91.3%.
Support by the grant from the National Natural Sciences
Foundation of China (No. 20672054, 20872073), National
Natural Science Funds for Distinguished Young Scholar
(20625618) and National Basic Research Program of China
(973 program, 2009CB219901) is gratefully acknowledged.
Notes and references
1 For recent reviews, see: (a) R. D. Rogers and K. R. Seddon,
Science, 2003, 302, 792; (b) T. L. Greaves and C. J. Drummond,
Chem. Rev., 2007, 107, 2615; (c) T. Welton, Coord. Chem. Rev.,
2004, 248, 2459; (d) Y. Yoshida and G. Saito, Phys. Chem. Chem.
Phys., 2010, 12, 1675; (e) R. Giernoth, Angew. Chem., Int. Ed.,
2010, 49, 2834.
2 S. Hayashi and H. Hamaguchi, Chem. Lett., 2004, 1590.
3 Y. Yoshida and G. Saito, Phys. Chem. Chem. Phys., 2010, 12, 1675.
4 R. E. Del Sesto, T. M. McCleskey, A. K. Burrell, G. A. Baker,
J. D. Thompson, B. L. Scott, J. S. Wilkes and P. Williams, Chem.
Commun., 2008, 447.
5 B. Mallick, B. Balke, C. Felser and A. V. Mudring, Angew. Chem.,
2008, 120, 7747 (Angew. Chem., Int. Ed., 2008, 47, 7635).
6 M. Li, S. L. De Rooy, D. K. Bwambok, B. El-Zahab, J. F. DiTusa
and I. M. Warner, Chem. Commun., 2009, 6922.
7 Y. Yoshida, H. Tanaka and G. Saito, Chem. Lett., 2007, 1096.
8 J. W. Lee, J. Y. Shin, Y. S. Chun, H. B. Jang, C. E. Song and
S. G. Lee, Acc. Chem. Res., 2010, 43, 985.
15 (a) R. H. Liu, X. M. Liang, C. Y. Dong and X. Q. Hu, J. Am.
Chem. Soc., 2004, 126, 4112; (b) B. Karimi, A. Biglari, J. K. Clark
and V. Budarin, Angew. Chem., Int. Ed., 2008, 46, 7210.
16 D. E. Bergbreiter, J. H. Tian and C. Hongfa, Chem. Rev., 2009,
109, 530.
17 N. W. Wang, R. H. Liu, J. P. Chen and X. M. Liang, Chem.
Commun., 2005, 5322.
18 D. S. Chio, D. H. Kim, U. S. Shin, R. R. Deshmukh, S. G. Lee and
C. E. Song, Chem. Commun., 2007, 3467.
9 (a) C. Bolm, J. Legros, J. L. Paih and L. Zani, Chem. Rev., 2004,
104, 6217; (b) S. Enthaler, K. Junge and M. Beller, Angew. Chem.,
2008, 120, 3363 (Angew. Chem., Int. Ed., 2008, 47, 3317).
10 Selected recent examples: (a) M. D. Ngugen, L. V. Nguyen, E. H. Jeon,
J. H. Kim, M. Cheong, H. S. Kim and J. S. Li, J. Catal., 2008, 258, 5;
(b) J. Y. Kim, J. T. Kim, E. A. Song, Y. K. Min and H. O. Hamaguchi,
19 J. H. Traverse, Y. E. Nesmelov, M. Crampton, P. Lindstrom,
D. D. Thomas and R. J. Bache, Am. J. Physiol. Heart Circ.
Physiol., 2006, 290, H2453.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 2697–2699 2699