C O M M U N I C A T I O N S
2+
rate of isomerization to the corresponding S-bound RuII-S(O)R2
the heteroscorpionate RuII-H2O2+ complex possessing a remarkable
product, unfortunately, this Ru(IV)-oxo complex did not possess
the catalytic reactivity toward thioether oxidation.
In our study, methyl p-tolyl sulfide was readily oxidized by [2B]-
(PF6)2 to methyl p-tolyl sulfoxide. The turnover number was
calculated as 53 after a period of 36 h, eq 2.9
steric effect of the heteroscorpionate dpp ligand.
Acknowledgment. K.J.T. acknowledges the National Science
Foundation and ARCO Chemical for partial financial support.
M.H.V.H. gratefully acknowledges the Laboratory Directed Re-
search and Development Program as well as the postdoctoral
fellowship support from the Director’s Office of Los Alamos
National Laboratory for support of this research. Los Alamos
National Laboratory is operated by the University of California for
the U.S. Department of Energy under Contract W-7405-ENG-36.
(CH3)(p-CH3C6H4)S [O ] (11.4 psi), [2B](PF ) Cat.8
2
6 2
ODCB, 25.0 ( 0.1 °C
(CH3)(p-CH3C6H4)SO (2)
Since the reaction in eq 2 occurs under mild conditions, it pre-
sumably proceeds via a mechanism involving the putative fac-[RuIV-
(dpp)(O)(tppm)]2+ intermediate, reminiscent of our aerobic oxida-
Supporting Information Available: Text containing product
analysis and product distribution, Supporting Information Table 1,
Supporting Information Figures 1-8 are included (PDF). This material
tion of cyclohexene catalyzed by cis-[RuII(H2O)(bpy)2(PR3)]2+ 7b
.
Experimental facts in support of this mechanism are the absence
11
of detected H2O2 and the reactions in which fac-[RuIV(dpp)(O)-
References
(tpmm)](PF6)2 ([3A](PF6)2) stoichiometrically oxidizes methyl
p-tolyl sulfide, 2-propanol, and allyl alcohol to methyl p-tolyl
sulfoxide, acetone, and glycidol, respectively. The key feature in
the proposed mechanism is the extraordinary heteroscorpionate
effect of dpp that rapidly extrudes the O-bound sulfoxide ligand
before the isomerization can even occur.9
[3A](PF6)2 stoichiometrically reacts with methyl p-tolyl sulfide
in CH3CN to form the solvento complex, fac-[RuII(NCCH3)(dpp)-
(tpmm)](PF6)2 ([4A](PF6)2) and methyl p-tolyl sulfoxide as the
organic product. The reaction was studied under N2 by following
characteristic change in the absorption spectrum at λmax ) 352 nm
as [3A](PF6)2 was directly converted into [4A](PF6)2. As shown in
the Supporting Information (Figure 2) in the oxidation of methyl
p-tolyl sulfide by [3A](PF6)2, the extrusion of methyl p-tolyl
sulfoxide is too fast for the O-bound RuII-OS(CH3)(p-CH3C6H4)2+
intermediate to be even observed. The spectra simply show the
direct conversion from [3A](PF6)2 to [4A](PF6)2.
(1) (a) Bolm, C. Med. Res. ReV. 1999, 19, 348-356 and references therein.
(b) Rocha, E. P. C.; Sekowska, A.; Danchin, A. Febs. Lett. 2000, 476,
8-11. (c) Roediger, W. E. W.; Moore, J.; Babidge, W. Digest. Dis. Sci.
1997, 42, 1571-1579. (d) Pfennig, N. Ann. ReV. Microbiol. 1993, 47,
1-29 and references therein.
(2) (a) Parsons, M. B.; Bird, D. K.; Einaudi, M. T.; Alpers, C. N. App.
Geochem. 2001, 16, 1567-1593. (b) Niesen, T. P.; De Guire, M. R. J.
Electroceram. 2001, 6, 169-207. (c) Suzuki, I. Biotechnol. AdV. 2001,
19, 119-132. (d) Burgess, J. E.; Parsons, S. A.; Stuetz, R. M. Biotechnol.
AdV. 2001, 19, 35-63.
(3) (a) Harrup, M. K.; Hill, C. L. J. Mol. Catal. A: Chem. 1996, 106, 57-
66. (b) Kuwata, S.; Hidai, M. Coord. Chem. ReV. 2001, 213, 211-305.
(c) Kotrba, P.; Ruml, T. Collect. Czech. Chem. Commun. 2000, 65, 1205-
1247. (d) Litter, M. I. Appl. Catal., B 1999, 23, 89-114.
(4) (a) DellAnna, M. M.; Mastrorilli, P.; Nobile, C. F.; Taurino, M. R.; Calo,
V.; Nacci, A. J. Mol. Catal. A: Chem. 2000, 151, 61-69. (b) Lorenz, J.
K.; Kuech, T. F.; Ellis, A. B. Langmuir 1998, 14, 1680-1683. (c) James,
B. R. In Dioxygen ActiVation and Homogeneous Catalytic Oxidation,
Simandi, L. I., Ed.; Elsevier: Amsterdam, 1991; p 195. (d) Nakagawa,
H.; Higuchi, T.; Kikuchi, K.; Urano, Y.; Nagano, T. Chem. Pharm. Bull.
1998, 46, 1656-1657.
(5) (a) Vassell, K. A.; Espenson, J. H. Inorg. Chem. 1994, 33, 5491-
5498. (b) Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. J.
Am. Chem. Soc. 1984, 106, 8188-8193. (c) Difuria, F.; Modena, G.;
Seraglia, R. Synthesis (Stuttgart) 1984, 4, 325-326.
(6) (a) Riley, D. P.; Shumate, R. E. J. Am. Chem. Soc. 1984, 106, 3179-
3184. (b) Riley, D. P.; Oliver, J. D. Inorg. Chem. 1986, 25, 1814-1821;
1821-1825; 1825-1830. (c) Srivastana, R. S.; Milani, B.; Alessio, E.;
Mestroni, G. Inorg. Chim. Acta 1992, 191, 15-17. (d) Fergusson, J. E.;
Page, C. T.; Robinson, W. T. Inorg. Chem. 1976, 15, 2270-2273.
Besides sulfide, [3A](PF6)2 also oxidizes 2-propanol to acetone12
and epoxidizes allyl alcohol to glycidol, eqs 3-4. The reactions
were studied in 0.1 M HNO3/NaNO3 solution (pH ) 2.00) at 25.0
( 0.1 °C by UV-vis monitoring at λmax ) 360 nm for [2A]2+
.
[RuIV(dpp)(O)(tpmm)]2+ + (CH3)2CHOH H O8
2
(7) (a) Bessel, C. A.; Leising, R. A.; Takeuchi, K. J. J. Chem. Soc., Chem.
Commun. 1991, 833-835. (b) Leising, R. A.; Ohman, J. S.; Takeuchi, K.
J. Inorg. Chem. 1988, 27, 3804-3809.
[RuII(H2O)(dpp)(tpmm)]2+ + (CH3)2CdO (3)
(8) (a) Huynh, M. H. V.; Lasker, J. M.; Wetzler, M.; Mort, B.; Szczepura, L.
F.;Witham, L. M.; Cintron, J. M.; Marschilok, A. C.; Ackerman, L. J.;
Castellano, R. K.; Jameson, D. L.; Churchill, M. R.; Jircitano, A. J.; and
Takeuchi, K. J. J. Am. Chem. Soc. 2001, 123, 8780-8784. (b) Huynh,
M. H. V.; Smyth, J.; Wetzler, M.; Mort, B.; Gong, P. K.; Witham, L. M.;
Jameson, D. L.; Lasker, J. M.; Charepoo, M.; Gornikiewicz, M.; Cintron,
J. M.; Imahori, G.; Sanchez, R. R.; Krajkoski, L. M.; Churchill, D. G.;
Churchill, M. R.; Takeuchi, K. J. Angew. Chem., Int. Ed. 2001, 40, 4469-
4473.
Methyl p-tolyl sulfide, acetone, and glycidol were extracted from
the reaction solutions with hexane and quantitatively analyzed by
(9) See Supporting Information.
GC-MS (90-95% yield). In both the catalytic and the stoichio-
metric oxidations, the number of moles of methyl p-tolyl sulfide
consumed is equal to the number of moles of methyl p-tolyl
sulfoxide produced. This mass balance studies show that sulfide is
not consumed as sacrificial co-reductant, and the absence of H2O2
supports the mechanism reported previuosly.7b Representatives of
calibration curves and details of product analyses for the catalysis
and oxidation of methyl p-tolyl sulfide as well as 2-propanol are
provided in Supporting Information Figures 5-8 and Table 1.
From the crystallographic data on [2A](PF6)2, the absence of
H2O2, the lack of catalytic suppression, and the stoichiometric
oxidation of methyl p-tolyl sulfide, 2-propanol, and allyl alcohol
by [3A](PF6)2, it can be concluded that the aerobic oxidation of
methyl p-tolyl sulfide to methyl p-tolyl sulfoxide is catalyzed by
(10) (a) Rajapakse, N.; James, B. R.; Dolphin, D. Catal. Lett. 1989, 2, 219-
225. (b) Roecker, L.; Dobson, J. C.; Vining, W. J.; Meyer, T. J. Inorg.
Chem. 1987, 26, 779-781.
(11) (a) Although earlier works cited in ref 5 and several others suggested
that the reaction of RuII-OH2 + O2 f RuIVdO2+ + H2O2 may be
2+
13b
involved, attempts to detect H2O2 in this work using K2Cr2O7-H2SO4
and Quantofix peroxide 100 do not show any evidence for the presence
of H2O2. Detailed procedures are provided in the Supporting Information.
(b) Pladziewicz, J. R.; Meyer, T. J.; Broomhead, J. A.; Taube, T. Inorg.
Chem. 1973, 12, 639-643.
(12) (a) Thompson, M. S.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4106-
4115. (b) Treadway, J. A.; Moss, J. A.; Meyer, T. J. Inorg. Chem. 1999,
38, 4386. (c) Thompson, M. S.; Degiovani, W. F.; Moyer, B. A.; Meyer,
T. J. J. Org. Chem. 1984, 49, 4972-4977.
(13) Marmion, M. E.; Takeuchi, K. J. J. Chem. Soc., Dalton Trans. 1988, 9,
2385-2391. (b) Muller, J. G.; Acquaye, J. H.; Takeuchi, K. J. Inorg.
Chem. 1992, 31, 4552-4557.
JA0124111
9
J. AM. CHEM. SOC. VOL. 125, NO. 2, 2003 309