ACS Catalysis
Research Article
step was investigated using EPR investigations at different
temperatures. The spectra exhibit a mixture of species
characteristic of TiIII, S = 1/2, species and TiIII−TiIII, S = 1
pairs. The spin S = 1 pairs produce a broad signal that could not
be isolated from the S = 1/2 systems. Nonetheless, at a low
reduction level, the S = 1 system disappears, yielding a mixture
of five different S = 1/2 species. Both room temperature and
low temperature (frozen matrix) spectra were simulated
providing some insights from the g and A tensors on the
symmetry and coordination number of the TiIII center of each
species. The rationale for such a variety of species is related to
the tendency of TiIV alkoxides to dimerize, a phenomenon
more favorable for TiIII ions that have a larger ionic radius than
TiIV ions. Then, monomeric tetrahedral TiIII species, TiIII−TiIV
pairs, and eventually TiIV−TiIII−TiIV trimers are likely to coexist
under partial reduction and were tentatively assigned. Indeed,
the dominating species at room temperature is the elongated
tetrahedral TiIII species A (∼ 80%) that is coordinatively
unsaturated and preferably associated with the catalytic activity.
The proposed mechanism is in agreement with the in situ 29Si
NMR analysis of the silicon based intermediate, the
stoichiometry of the reaction, EPR studies, and partial
racemization obtained with stereogenic phosphine oxides.
The mechanism is based on a back and forth oxido-reduction
of Ti from IV to III oxidation state.38 First, titanium(IV) acts as
a one-electron oxidation species on SiH producing Si•. Second,
the so-obtained titanium(III) species reduces the SiO•
intermediate into a silanol species. The reduction of tertiary
phosphine oxides thus consists of a transfer of O2− species on a
Si• yielding SiO• where oxygen is formally at the oxidation state
−1. Moreover, a reduction of Ph3PO on a 100 g scale was
described. These conditions may be attractive as a general way
to reduce tertiary phosphine oxides. This improved method
involved the following characteristic features: (1) An air- and
moisture-stable hydrosiloxane reagent was used as a hydride
source. (2) Water-insoluble “process friendly” solvents such as
toluene, methylcyclohexane, and cyclohexane were used as
solvents. (3) Crystals of triphenylphosphine were obtained
directly with a straightforward workup. (4) Treatment of the
waste stream by potassium hydroxide gave inert TiO2 and
siloxanes. (5) This reaction is general.23−26
REFERENCES
■
(1) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. Comprehensive
asymmetric catalysis; Springer-Verlag GmbH: Berlin, 1999.
(2) Ojima, I. Catalytic asymmetric synthesis; Wiley-VCH: New York,
2000.
(3) Diederich, F.; Stang, P. J. Metal-catalyzed cross-coupling reactions;
Wiley-VCH: Weinheim, Germany, 1997.
(4) Tsuji, J. Palladium reagents and catalysts; Wiley & Sons:
Chichester, U. K., 2004.
(5) Beller, M.; Bolm, C. Transition metals for organic synthesis. Wiley-
VCH: Weinheim, Germany, 2004.
(6) Engel, R. Handbook of organophosphorus chemistry; Engel, R., Ed.;
Marcel Dekker: New York, 1992.
(7) Imamoto, T.; Kikuchi, S.-I.; Miura, T.; Wada, Y. Org. Lett. 2001,
3, 87−90.
(8) Imamoto, T.; Takeyama, T.; Kusumoto, T. Chem. Lett. 1985,
1491−1492.
(9) Bootle-Wilbraham, A.; Head, S.; Longstaff, J.; Wyatt, P.
Tetrahedron Lett. 1999, 40, 5267−5270.
(10) Busacca, C. A.; Raju, R.; Grinberg, N.; Haddad, N.; James-Jones,
P.; Lee, H.; Lorenz, J. C.; Saha, A.; Senanayake, C. H. J. Org. Chem.
2008, 73, 1524−1531.
(11) Rajendran, K. V.; Gilheany, D. G. Chem. Commun. 2012, 48,
817−819.
(12) Fritzsche, H.; Hasserodt, U.; Korte, F.; Friese, G.; Adrian, K.;
Arenz, H. J. Chem. Ber. 1964, 97, 1988−1993.
(13) Horner, L.; Balzer, W. D. Tetrahedron Lett. 1965, 1157−1162.
(14) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91,
2788−2789.
(15) Krenske, E. H. J. Org. Chem. 2012, 77, 1−4.
(16) Organophosphorus Chemistry Series; Allen, D. W., Tebby, J. C.,
Eds.; Royal Society of Chemistry Cambridge: Cambridge, U. K.; pp
1970−2012.
(17) Coumbe, T.; Lawrence, N. J.; Muhammad, F. Tetrahedron Lett.
1994, 35, 625−628.
(18) Lawrence, N. J.; Drew, M. D.; Bushell, S. M. J. Chem. Soc., Perkin
Trans. 1 1999, 3381−3391.
(19) Wells, A. S. Org. Process Res. Dev. 2010, 14, 484−484.
(20) Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc.
2012, 134, 9727−9732.
(21) Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M. J.
Am. Chem. Soc. 2012, 134, 18325−18329.
(22) Harris, J. R.; Haynes, M. T.; Thomas, A. M.; Woerpel, K. A. J.
Org. Chem. 2010, 75, 5083−5091.
(23) Berthod, M.; Favre-Reguillon, A.; Mohamad, J.; Mignani, G.;
Docherty, G.; Lemaire, M. Synlett 2007, 1545−1548.
(24) Petit, C.; Favre-Reguillon, A.; Albela, B. l.; Bonneviot, L.;
Mignani, G.; Lemaire, M. Organometallics 2009, 28, 6379−6382.
(25) Petit, C.; Favre-Reguillon, A.; Mignani, G.; Lemaire, M. Green
Chem. 2010, 12, 326−330.
(26) Dayoub, W.; Favre-Reguillon, A.; Berthod, M.; Jeanneau, E.;
Mignani, G.; Lemaire, M. Eur. J. Org. Chem. 2012, 3074−3078.
(27) Babonneau, F.; Doeuff, S.; Leaustic, A.; Sanchez, C.; Cartier, C.;
Verdaguer, M. Inorg. Chem. 1988, 27, 3166−3172.
(28) Samuel, E.; Harrod, J. F.; Gourier, D.; Dromzee, Y.; Robert, F.;
Jeannin, Y. Inorg. Chem. 1992, 31, 3252−3259.
(29) Lukens, W. W.; Andersen, R. A. Inorg. Chem. 1995, 34, 3440−
3443.
ASSOCIATED CONTENT
* Supporting Information
Synthesis and characterization of the products; simulation
parameters of the EPR signal spectra at 135 K; experimental
and simulated EPR spectrum at 295 K; 29Si NMR analysis of
the reactions products; DSC analysis; Raman spectra of
individual species. This material is available free of charge via
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
́ ́
(30) Horacek, M.; Gyepes, R.; Císarova, I.; Kubista, J.; Pinkas, J.;
Mach, K. J. Organomet. Chem. 2010, 695, 2338−2344.
(31) Weil, J. A.; Bolton, J. R. Electron paramagnetic resonance:
elementary theory and practical applications; Wiley: New York, 2007.
(32) Gyepes, R.; Hiller, J.; Thewalt, U.; Polasek, M.; Sindelar, P.;
Mach, K. J. Organomet. Chem. 1996, 516, 177−185.
(33) Horacek, M.; Cisarova, I.; Cejka, J.; Karban, J.; Petrusova, L.;
Mach, K. J. Organomet. Chem. 1999, 577, 103−112.
(34) Russo, W. R.; Nelson, W. H. J. Am. Chem. Soc. 1970, 92, 1521−
1526.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by Rhodia Operations through a
Ph.D. grant to C.P. We thank Dr. Nicolas Capelle, Jean Louis
Gustin, and Serge Henrot from Rhodia Operations for
assistance with 29Si NMR, DSC, and RAMAN spectroscopy.
1437
dx.doi.org/10.1021/cs4002767 | ACS Catal. 2013, 3, 1431−1438