Organic Letters
Letter
of mice per treatment with NT-N -SP exhibited a weak
(3) Fukuto, J. M.; Ignarro, L. J.; Nagy, P.; Wink, D. A.; Kevil, C. G.;
Feelisch, M.; Cortese-Krott, M. M.; Bianco, C. L.; Kumagai, Y.; Hobbs,
A. J.; Lin, J.; Ida, T.; Akaike, T. FEBS Lett. 2018, 592, 2140−2152.
3
fluorescent signal. After 15 min, we injected Na SO and Na S
2
3
2
to the two groups of mice and then anesthetized them for
fluorescence imaging. As time went by, the fluorescence
intensity in the mice gradually decreased with the injection of
Na SO , and remarkable enhancement of fluorescence signals
(4) Zhao, Y.; Henthorn, H. A.; Pluth, M. D. J. Am. Chem. Soc. 2017,
1
(
1
39, 16365−16376.
5) Cerda, M. M.; Zhao, Y.; Pluth, M. D. J. Am. Chem. Soc. 2018, 140,
2574−12579.
2
3
appeared in the other group which was treated with Na S.
2
(6) Du, Z. B.; Song, B.; Zhang, W. Z.; Duan, C. C.; Wang, Y. L.; Liu, C.
L.; Zhang, R.; Yuan, J. L. Angew. Chem., Int. Ed. 2018, 57, 3999−4004.
(7) Pardeshi, K. A.; Ravikumar, G.; Chakrapani, H. Org. Lett. 2018, 20,
4−7.
Therefore, we envision that NT-N -SP was suitable for
3
screening the increased concentration of H S and SO in living
2
2
mice models.
To conclusion, inspired by the light-controlled recognition
strategy, for the first time we have successfully engineered a
(8) Li, J. L.; Meng, Z. Q. Nitric Oxide 2009, 20, 166−174.
(9) Xu, W.; Teoh, C. L.; Peng, J. J.; Su, D. D.; Yuan, L.; Chang, Y. T.
Biomaterials 2015, 56, 1−9.
10) Chen, S. Y.; Huang, Y. Q.; Liu, Z. W.; Yu, W.; Zhang, H.; Li, K.;
Yu, X. Q.; Tang, C. S. Clin Sci. (Lond). 2017, 131, 2655−2670.
11) Xiao, J.; Zhu, X. Y.; Kang, B.; Xu, J. B.; Wu, L. H.; Hong, J.;
Zhang, Y. F.; Wang, Z. N. Cell Physiol Biochem 2015, 37, 2444−2453.
12) Chen, Q. H.; Zhang, L. L.; Chen, S. Y.; Huang, Y. Q.; Li, K.; Yu,
novel fluorescent probe NT-N -SP based on 4-azide-1,8-
3
(
naphthalic anhydride and spiropyran derivative. The azide
group in NT-N -SP could be reduced in the presence of H S,
3
2
(
and the activated spiropyran moiety could serve as a new SO2
recognition site upon UV radiation. Importantly, the “smart”
(
sensor NT-N -SP exhibits high selectivity and sensitivity for SO
3
2
X. Q.; Zhang, C. Y.; Tang, C. S.; Du, J. B.; Jin, H. F. Int. J. Cardiol 2016,
and H S, and it was also successfully applied to in vivo imaging in
225, 392−401.
2
living cells and mice. Relying on these merits, we believe that this
work provides a powerful tool for better understanding the
contributions of SO and H S in physiological and pathological
(13) Ji, K. X.; Xue, L.; Cheng, J. W.; Bai, Y. Brain Res. Bull. 2016, 121,
68−74.
(14) Zhang, D.; Wang, X. L.; Tian, X. Y.; Zhang, L. L.; Yang, G. S.;
2
2
Tao, Y. H.; Liang, C.; Li, K.; Yu, X. Q.; Tang, X. J.; Tang, C. S.; Zhou, J.
Front Immunol 2018, 9, 882−899.
processes.
(
15) Jimenez, D.; Martínez-Manez, R.; Sancenon, F.; Ros-Lis, J. V.;
̃
́ ́ ́
ASSOCIATED CONTENT
Supporting Information
■
Benito, A.; Soto, J. J. Am. Chem. Soc. 2003, 125, 9000−9001.
*
S
(16) Searcy, D. G.; Peterson, M. A. Anal. Biochem. 2004, 324, 269−
275.
(
17) Radford-Knoery, J.; Cutter, G. A. Anal. Chem. 1993, 65, 976−
82.
18) de Macedo, A. N.; Jiwa, M. I. Y.; Macri, J.; Belostotsky, V.; Hill,
S.; Britz-McKibbin, P. Anal. Chem. 2013, 85, 11112−11120.
19) Jiang, G. W.; Li, M.; Wen, Y. Y.; Zeng, W. L.; Zhao, Q.; Chen, C.
L.; Yuan, H.; Liu, C. R.; Liu, C. L. ACS Sens 2019, 4, 434−440.
20) Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chem. Rev.
018, 118, 1253−1337.
21) Ong, J. X.; Lim, C. S. Q.; Le, H. V.; Ang, W. H. Angew. Chem., Int.
Ed. 2019, 58, 164−167.
22) Zhang, W. J.; Huo, F. J.; Yin, C. X. J. Mater. Chem. B 2018, 6,
919−6929.
23) Jiang, M.; Gu, X.; Lam, J. W. Y.; Zhang, Y.; Kwok, R. T. K.; Wong,
K. S.; Tang, B. Z. Chem. Sci. 2017, 8 (8), 5440−5446.
24) Cheng, P. H.; Zhang, J. J.; Huang, J. G.; Miao, Q. Q.; Xu, C. J.; Pu,
9
(
Experimental procedures, additional UV−vis and fluo-
(
(
2
(
AUTHOR INFORMATION
■
(
6
(
ORCID
Notes
(
K. Y. Chem. Sci. 2018, 9, 6340−6347.
The authors declare no competing financial interest.
(25) Gao, M.; Yu, F. B.; Lv, C. J.; Choo, J. B.; Chen, L. X. Chem. Soc.
Rev. 2017, 46, 2237−2271.
(26) Thorson, M. K.; Majtan, T.; Kraus, J. P.; Barrios, A. M. Angew.
ACKNOWLEDGMENTS
■
(
Chem., Int. Ed. 2013, 52, 4641−4644.
We thank the National Natural Science Foundation of China
Nos. 21775096, 21672131, and 21705102), One hundred
(27) Brito da Silva, C.; Gil, E. S.; da Silveira Santos, F.; Moras, A. M.;
Steffens, L.; Bruno Goncalves, P. F.; Moura, D. J.; Ludtke, D. S.;
Rodembusch, F. S. J. Org. Chem. 2018, 83, 15210−15224.
(28) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Chem. Rev.
people plan of Shanxi Province, Shanxi Province “1331 project”
key innovation team construction plan cultivation team (2018-
CT-1), Shanxi Province Foundation for Returness (2017-026),
the Shanxi Province Science Foundation for Youths (No.
2
(
014, 114, 12174−12277.
29) Dong, M.; Babalhavaeji, A.; Samanta, S.; Beharry, A. A.; Woolley,
G. A. Acc. Chem. Res. 2015, 48, 2662−2670.
2
01701D221061), Shanxi Collaborative Innovation Center of
(
(
30) Tian, Z.; Li, A. D. Q. Acc. Chem. Res. 2013, 46, 269−279.
High Value-added Utilization of Coal-related Wastes, China
Institute for Radiation Production and Scientific Instrument
Center of Shanxi University (201512). We also thank Dr. J. J.
Wang of Shanxi University for her assistance with confocal laser
scanning microscopy imaging.
31) Zhang, J. J.; Fu, Y. X.; Han, H. H.; Zang, Y.; Li, J.; He, X. P.;
Feringa, B. L.; Tian, H. Nat. Commun. 2017, 8 (1), 987−996.
(32) Zhang, W. J.; Liu, T.; Huo, F. J.; Ning, P.; Meng, X. M.; Yin, C. X.
Anal. Chem. 2017, 89, 8079−8083.
(33) Zhang, W. J.; Huo, F. J.; Liu, T.; Yin, C. X. J. Mater. Chem. B 2018,
6
, 8085−8089.
REFERENCES
■
(
1) Jiao, X. Y.; Li, Y.; Niu, J. Y.; Xie, X. L.; Wang, X.; Tang, B. Anal.
Chem. 2018, 90, 533−555.
2) Liu, C. R.; Chen, N. W.; Shi, W.; Peng, B.; Zhao, Y.; Ma, H. M.;
(
Xian, M. J. Am. Chem. Soc. 2014, 136, 7257−7260.
D
Org. Lett. XXXX, XXX, XXX−XXX