Table 1 Gas uptake and selectivity for BILP-3 and BILP-6
b
b
b
b
c
H
2
at 1 bar
CO
2
at 1 bar
CH
4
at 1 bar
N
2
at 1 bar
Selectivity
a
Polymer SABET/SALang
77 K
87 K
Q
st 273 K 298 K
Q
st
273 K 298 K
Q
st
273 K 298 K CO
2
/N
2
CO
2
/CH
4
BILP-3
BILP-6
1306/1715
1261/1654
21
22
15
16
8.0 225
8.2 211
145
121
28.6 24
28.4 27
17
19
16.6 3.3
13.2 6.8
2.4
6.7
59 (31)
63 (39)
8.1 (5.4)
8.4 (5.3)
a
2
À1
b
Surface area (m g ) was calculated from Ar isotherm. Gas uptake in mg g and the isosteric enthalpies of adsorption (Qst) in kJ mol .
À1
À1
c
Selectivity (mol/mol) was calculated from initial slope calculations at 273 K and (298 K).
applications. The selectivity of BILPs toward CO
CH was investigated by collecting gas uptake isotherms at
73 and 298 K (Fig. S18, ESIw).
The initial steep rise in CO compared to N
illustrated in Fig. S19, ESIw is most likely due to the high
affinity of CO to the accessible nitrogen sites of imidazole
2
over N
2
and
(c) R. Vaidhyanathan, S. S. Iremonger, G. H. K. Shimizu,
P. G. Boyd, S. Alavi and T. K. Woo, Science, 2010, 330, 650;
d) S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am.
4
(
2
Chem. Soc., 2008, 130, 10870.
2
2 4
and CH as
7
8
9
A. Phan, C. J. Doonan, F. J. Uriberomo, C. B. Knobler,
M. O’Keeffe and O. M. Yaghi, Acc. Chem. Res., 2010, 43, 58.
R. Dawson, E. Stockel, J. R. Holst, D. J. Adams and A. I. Cooper,
Energy Environ. Sci., 2011, 4, 4239.
M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2011,
23, 1650.
2
moieties. At 273 K and 0.1 bar, which is a typical partial
À1
pressure of CO in flue gases, the CO uptake is 1.26 mmol g
2
2
À1
whereas that of N is only 0.031 mmol g for BILP-3 (Fig. S19,
2
10 B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am.
Chem. Soc., 2011, 133, 748.
1 C.-F. Chen, Chem. Commun., 2011, 47, 1674.
2 N. T. Tsui, A. J. Paraskos, L. Torun, T. M. Swager and
E. L. Thomas, Macromolecules, 2006, 39, 3350.
3 B. S. Ghanem, M. Hashem, K. D. M. Harris, K. J. Msayib, M. Xu,
P. M. Budd, N. Chaukura, D. Book, S. Tedds, A. Walton and
N. B. McKeown, Macromolecules, 2010, 43, 5287.
4 M. Mastalerz, M. W. Schneider, I. M. Oppel and O. Presly,
Angew. Chem., Int. Ed., 2011, 50, 1046.
5 J. H. Chong, S. J. Ardakani, K. J. Smith and M. J. MacLachlan,
Chem.–Eur. J., 2009, 15, 11824.
6 S. I. Vagin, A. K. Ott, S. D. Hofmann, D. Lanziger and B. Rieger,
Chem.–Eur. J., 2009, 15, 5845.
17 L. Chen, J. Kim, T. Ishizuka, Y. Honsho, A. Saeki, S. Seki, H. Ihee
À1
ESIw); the corresponding values are 1.39 mmol g
and
1
1
À1
0
.038 mmol g
for BILP-6. Thus, based on initial slope
calculations in the pressure range of 0 to 0.1 bar, the estimated
adsorption selectivity for CO over N is 59 (BILP-3) and 63
BILP-6), Fig. S19, ESIw. This selectivity surpasses BPL
1
2
2
(
7
carbon and ZIFs, and are comparable to Bio-MOF-11
1
1
1
6a
31
81), noncovalent porous materials (NPMs) (74) and
(
9
BILP-1 (70). Recently, organic cage molecules featuring N–H
functionality have been reported to have CO /N selectivity in
2
2
3
2
the range of 36 to 138. However, such high selectivity is
associated with very modest gas uptakes that are very low
and D. Jiang, J. Am. Chem. Soc., 2009, 131, 7287.
8 P. Pandey, A. P. Katsoulidis, I. Eryazici, Y. Wu, M. G. Kanatzidis
and S. T. Nguyen, Chem. Mater., 2010, 22, 4974.
19 E. W. Neuse and M. S. Loonat, Macromolecules, 1983, 16, 128.
20 J. Weber, M. Antonietti and A. Thomas, Macromolecules, 2007,
40, 1299.
compared to those of BILPs. The CO selectivity over CH4
2
1
was calculated using initial slope calculations and found to be
very similar for both polymers; 8.1–8.4 (273 K) and 5.4–5.3
(298 K), as listed in Table 1. Again, these values exceed
7
reported values for BPL carbon and ZIFs.
2
1 P. Totsatitpaisan, S. P. Nunes, K. Tashiro and S. Chirachanchai,
Solid State Ionics, 2009, 180, 738.
In conclusion, we have demonstrated that triptycene-derived
BILPs exhibit high CO
their chemical and thermal stability which make them very
attractive in post-combustion CO capture studies.
2
uptake and selectivity in addition to
22 H. Y. Lee, J. Park, M. S. Lah and J.-I. Hong, Chem. Commun.,
007, 5013.
3 W. Lu, D. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller,
S. Brase, J. Guenther, J. Blumel, R. Krishna, Z. Li and H.-C.
Zhou, Chem. Mater., 2010, 22, 5964.
24 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 8875.
2
2
2
¨
¨
We are grateful to the U. S. Department of Energy, Office of
Basic Energy Sciences (DE-SC0002576) for generous support
of this project.
25 R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173.
6 A. P. Katsoulidis and M. G. Kanatzidis, Chem. Mater., 2011,
2
2
3, 1818.
7 J. L. C. Rowsell and O. M. Yaghi, J. Am. Chem. Soc., 2006, 128, 1304.
chet and F. Svec, Small, 2009, 5, 1098.
29 J. Sculley, D. Yuan and H.-C. Zhou, Energy Environ. Sci., 2011,
4, 2721.
Notes and references
2
1
2
3
S. Chu, Science, 2009, 325, 1599.
28 J. Germain, J. M. J. Fre
´
S. Q. Ma and H. C. Zhou, Chem. Commun., 2010, 46, 44.
D. M. D’Alessandro, B. Smit and J. R. Long, Angew. Chem., Int.
Ed., 2010, 49, 6058.
30 F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klo
M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 4570.
31 J. Lewinski, T. Kaczorowski, D. Prochowicz, T. Lipinska,
¨
ck,
4
R. Dawson, A. I. Cooper and D. J. Adams, Prog. Polym. Sci.,
2011, DOI: 10.1016/j.progpolymsci.2011.09.002.
G. T. Rochelle, Science, 2009, 325, 1652.
(a) J. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010,
´
´
5
6
I. Justyniak, Z. Kaszkur and J. Lipkowski, Angew. Chem., Int.
Ed., 2010, 49, 7035.
132, 38; (b) A. Demessence, D. M. D’Alessandro, M. L. Foo and
J. R. Long, J. Am. Chem. Soc., 2009, 131, 8784;
32 Y. Jin, B. A. Voss, A. Jin, H. Long, R. D. Noble and W. Zhang,
J. Am. Chem. Soc., 2011, 133, 6650.
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1141–1143 1143