monodisperse nanocrystals have been grown by biominer-
5
alization. Oligomeric DNA, bacteriophages, and other
biomecular components have been used to prepare various
6
nanostructures. Design and construction of supramolecular
architectures of nanoscopic dimensions give access to entities
of increasing complexity with distinct structural and func-
tional properties. The use of intermolecular forces provides
a rational and efficient method to position molecular
components precisely in a well-defined supramolecular
architecture. Self-assembly relies on a sequence of spontane-
ous recognition, growth, and termination steps to form the
final equilibrium supramolecular entity (or a collection of
such) through metal ion coordination, hydrogen bonds, or
hydrophobic or electrostatic interactions. There are a few
examples of mineralization on synthetic nanostructures by
metal nanoperticles or nanocrystals, based on specific
supramolecular intercations.7 Matsui et al. made a template
by immobilizing a histidine containing peptide on the surface
of a nanotube that is made up of self-assembling bis(N-R-
amido-glycylglycine)-1,7-heptane dicarboxilic acid and vari-
ous metal nanoparticles including gold, silver, and platinum
were stabilized on that nanotubular surface.8 Here, we
report a new strategy of mineralizing pseudopeptide-based
nanofiber by gold and silver nanoparticles using a two-
component nanografting method exploiting the rationale of
basic noncovalent interactions between the side chains of
self-assembled pseudopeptides and the peptide capped gold/
silver nanoparticles.
Figure 1. Schematic representation of the synthesis of peptide
capping agent.
,8
nanoparticles. The capping agent is bidentate in nature with
a free amine (-NH ) and free sulfahydryl group (-SH) at
2
the same terminus of the molecule, and this has made it an
efficient capping agent for metal nanoparticles. The peptide
1 was separately stirred with the aqueous solution of HAuCl4
a,b
3 4
and AgNO and then it was reduced with aqueous NaBH
solution, which produced a purple and light gray solution
stabilized by the peptide 1 capping agent. The plasmon band
appeared at 537 and 462 nm (broad) (Figure 2, parts c and
For obtaining an efficient capping agent for gold and silver
nanoparticles, a cysteine containing C-terminally protected
dipeptide (peptide 1) has been synthesized (Figure 1). This
peptide has been purified and characterized with conventional
methods (Supporting Information). We have used methyl-
ester protection at the C-terminus to lower the propensity of
self-assembly of the dipeptide, so that it can be effectively
used as a capping agent for gold and silver nanoparticles
and to control the homogeniety in size of the metal
(
4) (a) Baeuerlein, E. In Biomineralization; Wiley: New York, 2000.
(
b) Niemeyer, C. M. Angew. Chem., Int. Ed. 2001, 40, 4128-4158. (c)
Dujardin, E.; Mann, S. AdV. Mater. 2002, 14, 775-788. (d) Gazit, E. FEBS.
J. 2007, 274, 317-322. (e) Carny, O.; Shalev, D. E.; Gazit, E. Nano. Lett.
2
2
006, 6, 1594-1597. (f) He, J.; Kunitake, T.; Watanabe, T. Chem. Commun.
005, 795-796. (g) Patolsky, F.; Weizmann, Y.; Lioubashevski, O.; Willner,
I. Angew. Chem., Int. Ed. 2002, 41, 2323-2327. (h) Sauza, G. R.;
Christianson, D. R.; Staquicini, F. D.; Ozawa, M. G.; Snyder, E. Y.; Sidman,
R. L.; Miller, J. H.; Arap, W.; Pasqualini, R. Proc. Natl. Acad. Sci. U.S.A.
2
006, 103, 1215-1220.
5) S o¨ llner, C.; Burghammer, M.; Nentwich, E. B.; Berger, J.; Schwarz,
H.; Riekel, C.; Nicolson, T. Science 2003, 302, 282-286.
6) (a) Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998,
(
(
3
91, 775-778. (b) Niemeyer, C. M. Curr. Opin. Chem. Biol. 2000, 4, 609-
6
18. (c) Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher,
A. M. Nature 2000, 405, 665-668. (d) Lee, S. W.; Mao, C.; Flynn, C. E.;
Belcher, A. M. Science 2002, 296, 892-895. (e) Rudolph, A. S.; Calvert,
J. M.; Schoen, P. E.; Schnur, J. M. AdV. Exp. Med. Biol. 1988, 238, 305-
3
20. (f) Jiang, K.; Eitan, A.; Schadler, L. S.; Ajayan, P. M.; Siegel, R. W.;
Grobert, N.; Mayne, M.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Nano
Lett. 2003, 3, 275-277. (g) Banerjee, S.; Wong, S. S. Nano Lett. 2002, 2,
1
95-200.
(
7) Ray, S.; Das, A. K.; Banerjee, A. Chem. Commun. 2006, 2816-
2
818.
Figure 2. (a) Infrared spectra of (i) peptide 1, (ii) peptide 1 capped
gold nanoparticle, and (iii) peptide 1 capped Ag nanoparticle. (b)
Plasmon band of peptide 1 capped gold nanoparticle solution and
(c) plasmon band of peptide 1 capped silver nanoparticle.
(
8) (a) Lingtao, Y.; Banerjee, I. A.; Matsui, H. J. Mater. Chem. 2004,
1
2
4, 739-743. (b) Djalali, R.; Chen, Y.-f.; Matsui, H. J. Am. Chem. Soc.
002, 124, 13660-13661. (c) Rabatic, B. M.; Claussen, R. C.; Stupp, S. I.
Chem. Mater. 2005, 17, 5877-5879. (d) Sone, E. D.; Stupp. S. I. J. Am.
Chem. Soc. 2004, 126, 12756-12757.
2490
Org. Lett., Vol. 9, No. 13, 2007