Page 7 of 8
Journal of the American Chemical Society
10. Su, X.; Huang, H.; Yuan, Y.; Li, Y., Radical desulfur-
Steven J. Geib: 0000-0002-9160-7857
Dennis P. Curran: 0000-0001-9644-7728
1
2
3
fragmentation and reconstruction of enol triflates: Facile access
to α-trifluoromethyl ketones. Angew. Chem. Int. Ed. 2017, 56,
1338-1341.
ACKNOWLEDGMENT
11. Kawamoto, T.; Sasaki, R.; Kamimura, A., Synthesis of α-
trifluoromethylated ketones from vinyl triflates in the absence
of external trifluoromethyl sources. Angew. Chem. Int. Ed. 2017,
56, 1342-1345.
12. (a) Dolbier, W. R., Fluorinated free radicals. Top. Curr.
Chem. 1997, 192, 97-163; (b) Dolbier, W. R., Structure, reactivity,
and chemistry of fluoroalkyl radicals. Chem. Rev. 1996, 96,
1557-1584.
13. (a) Xiang, J.; Evarts, J.; Rivkin, A.; Curran, D. P.; Fuchs, P. L.,
Use of allylic triflones for allylation of C-H bonds. Tetrahedron
Lett. 1998, 39, 4163-4166; (b) Xiang, J.; Jiang, W.; Gong, J.;
Fuchs, P., Stereospecific alkenylation of C–H bonds via reaction
with ß-heteroatom substituted vinyl triflones. J. Am. Chem. Soc.
1997, 119, 4123-4129; (c) Gong, J.; Fuchs, P., Alkynylation of C–
H bonds via reaction with acetylenic triflones. J. Am. Chem. Soc.
1996, 118, 4486-4487; (d) dos Passos Gomes, G.; Wimmer, A.;
Smith, J. M.; König, B.; Alabugin, I. V., CO2 or SO2: Should it stay,
or should it go? J. Org. Chem. 2019, 84, 6232-6243.
14. Lee, J. Y.; Lim, K.-C.; Meng, X.; Kim, S., Radical alkylations
of alkyl halides and unactivated C-H bonds using vinyl triflates.
Synlett 2010, 1647-1650.
4
5
6
7
8
9
We thank the US National Science Foundation for support
of this work through grant CHE-1660927.
REFERENCES
1. Abiko, A., Boron enolate chemistry. In Boron Reagents in
Synthesis, American Chemical Society: 2016; Vol. 1236, pp 123-
171.
2. He, Z.; Zajdlik, A.; Yudin, A. K., [α]-Borylcarbonyl
compounds: From transient intermediates to robust building
blocks. Dalton Trans. 2014, 43, 11434-11451.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
3. (a) He, Z.; Yudin, A. K., Amphoteric α-boryl aldehydes. J.
Am. Chem. Soc. 2011, 133, 13770-13773; (b) Li, J.; Burke, M. D.,
Pinene-derived iminodiacetic acid (PIDA): A powerful ligand for
stereoselective synthesis and iterative cross-coupling of C(sp3)
boronate building blocks. J. Am. Chem. Soc. 2011, 133, 13774-
13777; (c) Corless, V. B.; Holownia, A.; Foy, H.; Mendoza-
Sanchez, R.; Adachi, S.; Dudding, T.; Yudin, A. K., Synthesis of α-
borylated ketones by regioselective Wacker oxidation of
alkenylboronates. Org. Lett. 2018; (d) Trinchera, P.; Corless, V. B.;
Yudin, A. K., Synthesis of previously inaccessible borylated
heterocycle motifs using novel boron-containing amphoteric
molecules. Angew. Chem. Int. Ed. 2015, 54, 9038-9041.
4. Ng, E. W. H.; Low, K. H.; Chiu, P., Synthesis and applications
of unquaternized C-bound boron enolates. J. Am. Chem. Soc.
2018, 140, 3537-3541.
5. (a) Li, X.; Curran, D. P., Insertion of reactive rhodium
carbenes into boron–hydrogen bonds of stable N-heterocyclic
carbene boranes. J. Am. Chem. Soc. 2013, 135, 12076-12081; (b)
Cheng, Q. Q.; Zhu, S. F.; Zhang, Y. Z.; Xie, X. L.; Zhou, Q. L.,
Copper-catalyzed B-H bond insertion reaction: A highly efficient
and enantioselective C-B bond-forming reaction with amine-
borane and phosphine-borane adducts. J. Am. Chem. Soc. 2013,
135, 14094-14097; (c) Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu,
M.-H., Rhodium(I)-catalyzed asymmetric carbene insertion into
B–H bonds: Highly enantioselective access to functionalized
organoboranes. J. Am. Chem. Soc. 2015, 137, 5268-5271.
6. (a) Horn, M.; Mayr, H.; Lacôte, E.; Merling, E.; Deaner, J.;
Wells, S.; McFadden, T.; Curran, D. P., N-heterocyclic carbene
boranes are good hydride donors. Org. Lett. 2012, 14, 82-85; (b)
Allen, T. H.; Curran, D. P., Relative reactivity of stable ligated
boranes and a borohydride salt in rhodium(II)-catalyzed boron-
hydrogen insertion reactions. J. Org. Chem. 2016, 81, 2094-
2098.
15. Allen, T. H., PhD Thesis, University of Pittsburgh, Chapter
4.2.4, NHC-borane Hammett values derived from 13C NMR
chemical shift correlations. 2018, pp 104-107. Available at
16. Martínez, A. G.; Subramanian, L. R.; Hanack, M.; Williams,
S. J.; Régnier, S., Trifluoromethanesulfonic anhydride.
Encyclopedia of Reagents for Organic Synthesis 2016, doi:
10.1002/047084289X.rt247.pub3.
17. Wu, J. J.; Xu, J.; Zhao, X., Selenide-catalyzed
stereoselective
construction
of
tetrasubstituted
trifluoromethylthiolated alkenes with alkynes. Chem. Eur. J.
2016, 22, 15265-15269.
18. Qin, L.; Ren, X.; Lu, Y.; Li, Y.; Zhou, J., Intermolecular
Mizoroki-Heck reaction of aliphatic olefins with high selectivity
for substitution at the internal position. Angew. Chem. Int. Ed.
2012, 51, 5915-5919.
19. Ramachandran, P. V.; Kulkarni, A. S.; Zhao, Y.; Mei, J.,
Amine–boranes bearing borane-incompatible functionalities:
Application to selective amine protection and surface
functionalization. Chem. Commun. 2016, 52, 11885-11888.
20. McFadden, T., PhD Thesis, University of Pittsburgh,
Chapter 2, Synthesis and study of amidine-borane complexes.
2018,
pp
68-99.
Available
at
7. Allen, T. H.; Kawamoto, T.; Gardner, S.; Geib, S. J.; Curran, D.
P., N-heterocyclic carbene boryl iodides catalyze insertion
reactions of N-heterocyclic carbene boranes and diazoesters.
Org. Lett. 2017, 19, 3680-3683.
8. Ren, S. C.; Zhang, F. L.; Xu, A. Q.; Yang, Y.; Zheng, M.; Zhou,
X.; Fu, Y.; Wang, Y. F., Regioselective radical α-borylation of α,ß-
unsaturated carbonyl compounds for direct synthesis of α-
borylcarbonyl molecules. Nat. Commun. 2019, 10, 1934.
9. Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou,
Q.-L., Gold-catalyzed oxidative coupling of terminal alkynes and
borane adducts: Efficient synthesis of α-boryl ketones. ACS
Catalysis 2018, 8, 7351-7355.
scholarship.pitt.edu/33821/.
21. Hioe, J.; Karton, A.; Martin, J. M. L.; Zipse, H., Borane-Lewis
base complexes as homolytic hydrogen atom donors. Chem.
Eur. J. 2010, 16, 6861-6865.
22. (a) Lacôte, E.; Curran, D. P.; Lalevée, J., NHC-boranes: Air-
and
water-tolerant
co-initiators
for
type
II
photopolymerizations Chimia 2012, 66, 382-385; (b) Tehfe, M.-
A.; Monot, J.; Makhlouf Brahmi, M.; Bonin-Dubarle, H.; Curran,
D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E.; Lalevée, J.;
Fouassier, J.-P., N-heterocyclic carbene-borane radicals as
efficient initiating species of photopolymerization reactions
under air. Polym. Chem. 2011, 2, 625-631; (c) Walton, J. C.;
Makhlouf Brahmi, M.; Fensterbank, L.; Lacôte, E.; Malacria, M.;
ACS Paragon Plus Environment