Page 7 of 14
Journal of the American Chemical Society
1.
Du, H.; Wang, P.; Li, L.; Wang, Y., Repair and translesion synthesis of O6-alkylguanine DNA lesions in human cells. J Biol
Chem 2019, 294 (29), 11144-11153.
2.
1
2
3
4
5
6
Ezerskyte, M.; Paredes, J. A.; Malvezzi, S.; Burns, J. A.; Margison, G. P.; Olsson, M.; Scicchitano, D. A.; Dreij, K., O6-
methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc Natl Acad Sci 2018, 115 (18), 4731-4736.
3.
Chem 2018, 293 (39), 15033-15042.
Wang, P.; Wang, Y., Cytotoxic and mutagenic properties of O6-alkyl-2'-deoxyguanosine lesions in Escherichia coli cells. J Biol
4.
Margison, G. P.; Santibanez Koref, M. F.; Povey, A. C., Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine.
Mutagenesis 2002, 17 (6), 483-7.
7
8
9
5.
Roos, W. P.; Batista, L. F.; Naumann, S. C.; Wick, W.; Weller, M.; Menck, C. F.; Kaina, B., Apoptosis in malignant glioma
cells triggered by the temozolomide-induced DNA lesion O6-methylguanine. Oncogene 2007, 26 (2), 186-97.
6.
Bennett, R. A.; Pegg, A. E., Alkylation of DNA in rat tissues following administration of streptozotocin. Cancer Res 1981, 41 (7),
2786-90.
7.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Montesano, R., Alkylation of DNA and tissue specificity in nitrosamine carcinogenesis. J Supramol Struct Cell Biochem 1981, 17
(3), 259-73.
8.
Harrison, K. L.; Jukes, R.; Cooper, D. P.; Shuker, D. E., Detection of concomitant formation of O6-carboxymethyl- and O6-
methyl-2'-deoxyguanosine in DNA exposed to nitrosated glycine derivatives using a combined immunoaffinity/HPLC method. Chem Res
Toxicol 1999, 12 (1), 106-11.
9.
Vanden Bussche, J.; Hemeryck, L. Y.; Van Hecke, T.; Kuhnle, G. G.; Pasmans, F.; Moore, S. A.; Van de Wiele, T.; De Smet,
S.; Vanhaecke, L., O6-carboxymethylguanine DNA adduct formation and lipid peroxidation upon in vitro gastrointestinal digestion of haem-
rich meat. Mol Nutr Food Res 2014, 58 (9), 1883-96.
10.
Lewin, M. H.; Bailey, N.; Bandaletova, T.; Bowman, R.; Cross, A. J.; Pollock, J.; Shuker, D. E.; Bingham, S. A., Red meat
enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res 2006, 66
(3), 1859-65.
11.
adduct profiling to mechanistically link red meat consumption to colon cancer promotion. Toxicol Res 2016, 5 (5), 1346-1358.
12. Cross, A. J.; Ferrucci, L. M.; Risch, A.; Graubard, B. I.; Ward, M. H.; Park, Y.; Hollenbeck, A. R.; Schatzkin, A.; Sinha, R.,
Hemeryck, L. Y.; Rombouts, C.; Hecke, T. V.; Van Meulebroek, L.; Bussche, J. V.; De Smet, S.; Vanhaecke, L., In vitro DNA
A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this
association. Cancer Res 2010, 70 (6), 2406-14.
13.
14.
Steinberg, P., Red Meat-Derived Nitroso Compounds, Lipid Peroxidation Products and Colorectal Cancer. Foods 2019, 8 (7).
Gottschalg, E.; Scott, G. B.; Burns, P. A.; Shuker, D. E., Potassium diazoacetate-induced p53 mutations in vitro in relation to
formation of O6-carboxymethyl- and O6-methyl-2'-deoxyguanosine DNA adducts: relevance for gastrointestinal cancer. Carcinogenesis
2007, 28 (2), 356-62.
15.
Carboxymethylguanine DNA Adducts by Human Y- and B-Family Polymerases. Chem Res Toxicol 2016, 29 (9), 1493-503.
16. Wu, J.; Wang, P.; Li, L.; Williams, N. L.; Ji, D.; Zahurancik, W. J.; You, C.; Wang, J.; Suo, Z.; Wang, Y., Replication studies
of carboxymethylated DNA lesions in human cells. Nucleic Acids Res 2017, 45 (12), 7276-7284.
17. Raz, M. H.; Sandell, E. S.; Patil, K. M.; Gillingham, D. G.; Sturla, S. J., High Sensitivity of Human Translesion DNA Synthesis
Polymerase kappa to Variation in O6-Carboxymethylguanine Structures. ACS Chem Biol 2019, 14 (2), 214-222.
18. Terasaki, M.; Totsuka, Y.; Nishimura, K.; Mukaisho, K.; Chen, K. H.; Hattori, T.; Takamura-Enya, T.; Sugimura, T.;
Raz, M. H.; Dexter, H. R.; Millington, C. L.; van Loon, B.; Williams, D. M.; Sturla, S. J., Bypass of Mutagenic O6-
Wakabayashi, K., Detection of endogenous DNA adducts, O-carboxymethyl-2'-deoxyguanosine and 3-ethanesulfonic acid-2'-deoxycytidine,
in the rat stomach after duodenal reflux. Cancer Sci 2008, 99 (9), 1741-6.
19.
of nitric oxide with glycine and in human blood DNA using a quantitative immunoslot blot assay. Chem Res Toxicol 2004, 17 (3), 294-300.
Cupid, B. C.; Zeng, Z.; Singh, R.; Shuker, D. E., Detection of O6-carboxymethyl-2'-deoxyguanosine in DNA following reaction
20.
Vanden Bussche, J.; Moore, S. A.; Pasmans, F.; Kuhnle, G. G.; Vanhaecke, L., An approach based on ultra-high pressure liquid
chromatography-tandem mass spectrometry to quantify O6-methyl and O6-carboxymethylguanine DNA adducts in intestinal cell lines. J
Chromatogr A 2012, 1257, 25-33.
21.
Da Pieve, C.; Sahgal, N.; Moore, S. A.; Velasco-Garcia, M. N., Development of a liquid chromatography/tandem mass
spectrometry method to investigate the presence of biomarkers of DNA damage in urine related to red meat consumption and risk of
colorectal cancer. Rapid Commun Mass Spectrom 2013, 27 (21), 2493-503.
22.
Yu, Y.; Wang, J.; Wang, P.; Wang, Y., Quantification of Azaserine-Induced Carboxymethylated and Methylated DNA Lesions
in Cells by Nanoflow Liquid Chromatography-Nanoelectrospray Ionization Tandem Mass Spectrometry Coupled with the Stable Isotope-
Dilution Method. Anal Chem 2016, 88 (16), 8036-42.
23.
Wang, Y. P.; Kiran. M.; Yan, S.; Zhang, P.; Guo, W.; Wang, Y.; Chen, H-Y.; Gillingham, D.; Huang, S., Nanopore Sequencing
Accurately Identifies the Mutagenic DNA Lesion O6‐Carboxymethyl Guanine and Reveals Its Behavior in Replication. Angewandte Chemie
2019, 58 (25), 8432-8436.
24.
Raz, M. H.; Aloisi, C. M. N.; Gahlon, H. L.; Sturla, S. J., DNA Adduct-Directed Synthetic Nucleosides. Acc Chem Res 2019, 52
(5), 1391-1399.
25.
Gong, J.; Sturla, S. J., A synthetic nucleoside probe that discerns a DNA adduct from unmodified DNA. J Am Chem Soc 2007, 129
(16), 4882-3.
26.
Gahlon, H. L.; Sturla, S. J., Hydrogen bonding or stacking interactions in differentiating duplex stability in oligonucleotides
containing synthetic nucleoside probes for alkylated DNA. Chemistry 2013, 19 (33), 11062-7.
27.
Dahlmann, H. D.; Berger, F.D; Kung, R.W; Wyss, L.A; Gubler, I.; McKeague, M.; Wetmore S.D.; Sturla, S.J, Fluorescent
Nucleobase Analogues with Extended Pi Surfaces Stabilize DNA Duplexes Containing O6‐Alkylguanine Adducts. Helv Chim Acta 2018, 7
(101).
ACS Paragon Plus Environment