Acknowledgment. We thank Professor Subbu Perumal
(Madurai Kamaraj University, Madurai, Tamil Nadu, India)
for the X-ray diffraction study of compound 5c. Financial
support from MEC (grant CTQ2006-10930/BQU) and
CAM-UCM (Grupos de Investigacio´n UCM, grant 920234)
is also gratefully acknowledged.
Scheme 5. Mechanistic Proposal for the Diastereoselectivity
Observed in the Reduction of Compounds 5 and 9 to 10
Supporting Information Available: Representative ex-
perimental procedures, characterization data for compounds
5, 9, and 10, X-ray data and cif file for 5c, and spectra of all
compounds. This material is available free of charge via the
OL801738D
(6) Namikoshi, M.; Rinehart, K. L.; Dahlem, A. M.; Beasley, V. R.;
Carmichael, W. W. Tetrahedron Lett. 1989, 30, 4349.
(7) Crews, P.; Manes, L. V.; Boehler, M. Tetrahedron Lett. 1986, 27,
2797.
(8) Roers, R.; Verdine, G. L. Tetrahedron Lett. 2001, 42, 3563.
(9) For a review of ꢀ-amino acid-based peptidominetics, see: Steer, D. L.;
Lew, R. A.; Perlmutter, P.; Smith, A. I.; Aguilar, M. I. Curr. Med. Chem.
2002, 9, 811.
(10) For a review of the structural and biological characteristices of
peptides containing exclusively ꢀ-amino acids (ꢀ-peptides), see: Gademann,
K.; Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999, 6, 905.
(11) (a) Koert, U. Angew. Chem., Int. Ed. Engl. 1997, 36, 1836. (b)
Porter, E. A.; Wang, X.; Lee, H.-S.; Weisblum, B.; Gellman, S. H. Nature
2000, 404, 565. (c) Raguse, T. L.; Jonathan, R.; LePlae, P. R.; Gellman,
S. H. Org. Lett. 2001, 3, 3963.
described in the literature for a related reduction,17 coordina-
tion to boron should take place on the enol tautomer of the
starting material, leading to 11, and the first hydride transfer
step can be expected to take place from the face opposite to
the hydroxyl group, as this would allow an intramolecular
hydrogen bond to develop in the transition state 12. Proto-
nation of the enol moiety in 13 would then take place from
the face opposite to the amino and hydroxyl substituents,
leading to the observed stereochemistry for compounds 10.
In summary, we have developed an experimentally con-
venient, user- and environmentally friendly two-step protocol
that requires simple, inexpensive, and readily available
starting materials, reagents, and catalysts and allows the
efficient and completely diastereoselective synthesis of
tetrasubstituted cyclohexane frameworks bearing four func-
tional groups, including a cis-ꢀ-aminoester moiety and
containing four stereocenters, three of which are adjacent
and a fourth which is quaternary.
(12) For selected reviews and monographs on multicomponent reactions,
see: (a) Do¨mling, A.; Ugi, I. Angew. Chem. Int. Ed. Engl. 2000, 39, 3168.
(b) Bienayme´, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem.-Eur. J. 2000,
6, 3321. (c) Ugi, A. Pure Appl. Chem. 2001, 73, 187. (d) Ugi, A. Molecules
2003, 8, 53. (e) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471. (f)
Zhu, J. Eur. J. Org. Chem. 2003, 1133. (g) Ramo´n, D. J.; Yus, M. Angew.
Chem., Int. Ed. 2005, 44, 1602. (h) Zhu, J., Bienayme´, H., Eds. Multicom-
ponent Reactions; Wiley-VCH: Weinheim, 2005. (i) Do¨mling, A. Chem.
ReV. 2006, 106, 17. For a symposium in print on this topic, see: Marek, I.,
Ed. Tetrahedron 2005, 67, 11299.
(13) In most reactions, compounds 5 were accompanied by small
amounts (5-10%) of the corresponding 1,3-cyclohexadiene derivatives,
arising from elimination of a molecule of water.
(14) See, for instance: Tsuruta, H.; Yamaguchi, K.; Imamoto, T.
Tetrahedron 2003, 59, 10419.
(15) Although the reaction described here is unprecedented, there is a
literature report of the preparation of 1-acetyl-2-alkylamino-1,3-cyclohexa-
diene derivatives in 0-74% yield from ꢀ-enaminones and chalcones
generated in situ from aryl bromides and propargyl alcohols. See: Schramm,
O. G.; Mu¨ller, T. J. J. Synlett 2006, 1841.
(16) For precedent of the fast generation of enaminones from amines
and ꢀ-ketoesters under CAN catalysis, see: Sridharan, V.; Avendan˜o, C.;
Mene´ndez, J. C. Synlett 2007, 881.
(5) Bates, R. B.; Brusoe, K. G.; Burns, J. J.; Caldera, S.; Cui, W.;
Gangwar, S.; Gramme, M. R.; McClure, K. J.; Rouen, G. P.; Schadow, H.;
Stessman, C. C.; Taylor, S. R.; Vu, V. H.; Yarick, G. V.; Zhang, J.; Pettit,
G. R.; Bontems, R. J. Am. Chem. Soc. 1997, 119, 2111.
(17) Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M.
J. Org. Chem. 1994, 59, 5328.
4306
Org. Lett., Vol. 10, No. 19, 2008