Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
(6) Selected recent regiodivergent transformations. (a) Fujino, D.; Yorimitsu,
Preliminarily, an enantioselective silacarboxylation of 1d was car-
ried out with (R,R)-Me-DuPhos under Conditions A, and 2d was af-
forded in 18% ee (unoptimized).
H.; Osuka, A. J. Am. Chem. Soc. 2014, 136, 6255. (b) Xu, K.; Thieme, N.; Breit,
B. Angew. Chem., Int. Ed. 2014, 53, 7268. (c) Xu, K.; Thieme, N.; Breit, B. Angew.
Chem., Int. Ed. 2014, 53, 2162. (d) Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc.
2014, 136, 1125. (e) Zhao, Y.; Weix, D. J. J. Am. Chem. Soc. 2014, 136, 48. (f)
Gutiérrez-Bonet, Á.; Flores-Gaspar, A.; Martin, R. J. Am. Chem. Soc. 2013, 135,
12576. (g) Yang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 10642.
(7) (a) Fleming, I.; Pulido, F. J. J. Chem. Soc., Chem. Commun. 1986, 1010. (b)
Cuadrado, P.; Gonzàlez, A. M.; Pulido, F. J.; Fleming, I. Tetrahedron Lett. 1988,
29, 1825. (c) Fleming, I.; Rowley, M.; Cuadrado, P.; González-Nogal, A. M.; Pu-
lido, F. J. Tetrahedron, 1989, 45, 413. (d) Blanco, F. J.; Cuadrado, P.; Gonzàlez,
A. M.; Pulido, F. J.; Fleming, I. Tetrahedron Lett. 1994, 35, 8881. (e) Barbero, A.;
García, C.; Pulido, F. J. Tetrahedron 2000, 56, 2739.
(8) For reviews, see: (a) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
(b) Zang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395. (c) Huang, K.; Sun, C.-L.; Shi, Z.-
J. Chem. Soc. Rev. 2011, 40, 2435. (d) Cokoja, M.; Bruckmeier, C.; Rieger, B.;
Herrmann, W. A.; Kühn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.
(9) (a) Fujihara, T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem., Int.
Ed. 2011, 50, 523. (b) Fujihara, T.; Nogi, K.; Xu, T.; Terao, J.; Tsuji, Y. J. Am.
Chem. Soc. 2012, 134, 9106. (c) Fujihara, T.; Tani, Y.; Semba, K.; Terao, J.; Tsuji,
Y. Angew. Chem., Int. Ed. 2012, 51, 11487. (d) Nogi, K.; Fujihara, T.; Terao, J.;
Tsuji, Y. Chem. Commun. 2014, 50, 13052.
(10) Transition metal-catalyzed carboxylations of allenes with CO2 have been
reported although their catalytic activities and product selectivities were not sat-
isfactory: (a) Tsuda, T.; Yamamoto, T.; Saegusa, T. J. Organomet. Chem. 1992,
429, C46. (b) Dérien, S.; Clinet, J.-C.; Duñach, E.; Périchon, J. Synlett 1990, 361.
(c) Sasaki, Y. J. Mol. Catal. 1989, 54, L9. (d) Aresta, M.; Quaranta, E.; Ciccarese,
A. C1 Mol. Chem. 1985, 1, 283. (e) Döhring, A.; Jolly, P. W. Tetrahedron Lett.
1980, 21, 3021.
(11) (a) Takimoto, M.; Kawamura, M.; Mori, M.; Sato, Y. Synlett, 2005, 13,
2019. (b) Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2008, 130, 15254.
(12) (a) We have reported preliminary results on the regiodivergent carboxy-
lation of allenes as a poster: Tani, Y.; Fujihara, T.; Terao, J.; Tsuji, T. In 19th In-
ternational Symposium on Homogeneous Catalysis, Ottawa, Canada, July 6–11,
2014; Abstract 278. (b) At the same symposium, Martin and co-workers also re-
ported a related regiodivergent carboxylation of allylic esters as a poster: Cornella,
J.; Moragas, T.; Ruben, M. In 19th International Symposium on Homogeneous Ca-
talysis, Ottawa, Canada, July 6–11, 2014; Abstract 291.
In conclusion, we have developed a regiodivergent silacarboxylation
of allenes using PhMe2Si–B(pin) under CO2 atmosphere in the pres-
ence of a copper catalyst. The regioselectivity is highly controlled by the
proper choice of ligand; both the carboxylated vinylsilanes (2) and al-
lylsilanes (3) can be synthesized regiodivergently from a single substrate.
Further studies on the reaction mechanism and optimization of the en-
antioselective reaction are now in progress.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and characterization of the products. This ma-
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by Grant-in-Aid for Scientific Research (A)
and on Innovative Areas (“Molecular activation directed toward
straightforward synthesis”) from MEXT, Japan. Y.T. was grateful to a
JSPS Research Fellow.
REFERENCES
(1) (a) Barbero, A.; Pulido, F. J. Acc. Chem. Res. 2004, 37, 817. (b) Fleming, I.
Synthetic Application of Silylcuprates and Stannylcuprates. In Organocopper Re-
agents; Taylor, R. J., Ed. Oxford: New York, 1994; pp 257–276. (c) Liepins, V.;
Bäckvall, J.-E. Eur. J. Org. Chem. 2002, 3527. (d) Liepins, V.; Bäckvall, J.-E. Chem.
Commun. 2001, 265. (e) Fleming, I.; Newton, T. W.; Roessler, F. J. Chem. Soc.,
Perkin Trans. 1, 1981, 2527. (f) Linstadt, R. T. H.; Peterson, C. A.; Lippincott, D.
J.; Jette, C. I.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 4159. (g) Calde-
rone, J. A.; Santos, W. L. Angew. Chem., Int. Ed. 2014, 53, 4154. (h) Wang, P.; Yeo,
X.-L.; Loh, T.-P. J. Am. Chem. Soc. 2011, 133, 1254. (i) Nozaki, K.; Wakamatsu,
K.; Nonaka, T.; Tückmantel, W.; Oshima, K.; Uchimoto, K. Tetrahedron Lett.
1986, 27, 2007. (j) Xu, Y.-H.; Wu, L.-H.; Wang, J.; Loh, T.-P. Chem. Commun.
2014, 50, 7195. (k) Rae, J.; Hu, Y. C.; Procter, D. J. Chem. Eur. J. 2014, 20, 13143.
(l) Tani, Y.; Yamaguchi, T.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Lett. 2014,
Advance Publication. DOI: 10.1246/cl.141018
(2) PhMe2Si–B(pin) is commercially available from Aldrich (No. 683434).
For reviews on the utility of silylboranes in organic synthesis, see: (a) Oestreich,
M.; Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113, 402. (b) Ohmura, T.;
Suginome, M. Bull. Chem. Soc. Jpn. 2009, 82, 29.
(3) For reviews on synthesis and utility of allenes, see: (a) Ma, S. Chem. Rev.
2005, 105, 2829. (b) Jeganmohan, M.; Cheng, C.-H. Chem. Commun. 2008,
3101. (c) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074.
(4) (a) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57. (b)
Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London, 1981; pp 44–
82. (c) Colvin, E. W. Silicon Reagents in Organic Synthesis; Academic: London,
1988, pp 7–19. (d) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375. (e)
Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
(5) (a) Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London,
1981; pp 97–124. (b) Colvin, E. W. Silicon Reagents in Organic Synthesis; Aca-
demic: London, 1988, pp 25–37. (c) Chabaud, L.; James, P.; Landais, Y. Eur. J.
Org. Chem. 2004, 3173.
(13) Burk, M. J.; Feaster, J. E.; Nugent, W. A. Harlow, R. L. J. Am. Chem. Soc.
1993, 115, 10125.
(14) The acetal moiety of 2b was intact during the catalytic reaction, but was
mostly converted to the corresponding ketone (2b’) through the work-up. To
our delight, the acetal moiety of 3b was robust to a similar work-up procedure.
(15) See the Supporting Information for details.
(16) Besides entries in Tables 2, four allenes (1m–p) including those bearing
silyl ether (1m) and ester (1n) groups also provided the corresponding al-
lylsilanes (3m–p) selectively in high yields under Conditions B.15
(17) (a) Payne, G. B.; Williams, P. H. J. Org. Chem. 1959, 24, 54. (b) Kirshen-
baum, K. S.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1979. (c) Toró, A.; Ambrus,
G. Tetrahedron Lett. 1992, 33, 5265.
(18) (a) Tamao, K.; Ishide, N.; Tanaka, T.; Kumada, M. Organometallics
1983, 2, 1694. (b) Fleming, I.; Henning, R.; Plaut, H. J. Chem. Soc., Chem. Com-
mun. 1984, 29. (c) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E. Sanderson,
P. E. J. J. Chem. Soc., Perkin Trans. 1 1995, 317.
(19) (a) Okamoto, K.; Tamura, E.; Ohe, K. Angew. Chem., Int. Ed. 2013, 52,
10639. (b) Kim, S.; Emeric, G.; Fuchs, P. L. J. Org. Chem. 1992, 57, 7362.
(20) Cu-catalyzed carboxylations of organoboranes have been reported, alt-
hough all of them required a stoichiometric amount of a base. See: (a) Ohishi, T.;
Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792. (b) Takaya, J.;
Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett. 2008, 10, 2697. (c) Ohmiya, H.;
Tanabe, M.; Sawamura, M. Org. Lett. 2011, 13, 1086. (d) Ohishi, T.; Zhang, L.;
Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2011, 50, 8114. (e) Duong, H. A.;
Huleatt, P. B.; Tan, Q.-W.; Shuying, E. L. Org. Lett. 2013, 15, 4034.
(21) PhMe2Si–B(pin) was reported to react with [(IPr)CuOtBu] affording
[(IPr)CuSiMe2Ph], which was fully characterized including single-crystal X-ray
structural determination: Kleeberg, C.; Cheung, M. S.; Lin, Z.; Marder, T. B. J.
Am. Chem. Soc. 2011, 133, 19060.
ACS Paragon Plus Environment