Journal of Materials Chemistry A
Page 12 of 14
DOI: 10.1039/C5TA01420D
AEMFC. Test conditions: membraneꢀthickness of 45 µm, cell
1
F. Zhang, H. Zhang and C. Qu, J. Mater. Chem., 2011, 21, 12744–
12752.
K. D. Kreuer, Chem. Mater., 1996, 8, 610–641.
W. Li, J. Fang, M. Lv, C. Chen, X. Chi, Y. Yang and Y. Zhang, J.
Mater. Chem., 2011, 21, 11340–11346.
G. Merle, M. Wessling and K. Nijmeijer, J. Membr. Sci., 2011, 377,
1–35.
J. S. Spendelow and A. Wieckowski, Phys. Chem. Chem. Phys.,
2007, 9, 2654–2675.
J. Pan, S. Lu, Y. Li, A. Huang, L. Zhuang and J. Lu, Adv. Funct.
Mater., 2009, 19, 1–8.
N. Li, L. Wang and M. A. Hickner, Chem. Comm., 2014, 50, 4092–
4095.
N. Li, T. Yan, T. ThurnꢀAlbrecht and W. H. Binder, Energy.
Environ. Sci., 2012, 5, 7888–7892.
N. Li, Y. Leng, M. A. Hickner and C.ꢀY. Wang, J. Am. Chem. Soc.
2013, 135, 10124–10133.
o
temperature of 50 C, catalyst loadings of 0.5 mg Pt cmꢀ2 (Pt/C)
for both anode and cathode, gas flow rate of 0.5 L minꢀ1 for both
H2 and O2.
60
65
70
2
3
4
5
6
7
8
9
5
Conclusions
We have designed and synthesized “sideꢀchainꢀtype”
polypropyleneꢀbased anion exchange membrane with high base
stability using heterogeneous ZieglerꢀNatta catalyst mediated
polymerization that provide multiple structural variations to allow
10 tuning of the membrane properties. The side chain type PPꢀbased
AEMs exhibited comparable hydroxide conductivity to typical
AEMs based on benzyltrimethyl ammonium motif in spite of
their low water uptake. The PPꢀbased AEMs had unusually high
alkaline stability for up to 700 h in 5 M and 10 M NaOH at 80
15 °C. The steric effects of the long alkyl chains in ‘sideꢀchainꢀtype’
architecture surrounding the quaternary ammonium center are
likely the cause of the observed good alkaline stability.
Crosslinkable PPꢀbased AEMs were also obtained simply by
copolymerization of a thermally crosslinkable monomer. All of
20 the crosslinked membranes had better overall properties including
lower water uptake, lower water swelling ratio, better mechanical
properties, and lower methanol permeability, compared to those
of the uncrosslinked counterparts, while having comparable
hydroxide conductivities. A combination of good thermal and
25 chemical stability, excellent mechanical properties and excellent
balance between hydroxide conductivity and swelling or
methanol transport makes PPꢀbased membrane attractive as AEM
materials for alkaline fuel cells applications. We consider that
these ‘sideꢀchainꢀtype’ polypropylene synthesized by commercial
30 heterogeneous ZieglerꢀNatta catalyst mediated polymerization
could lead to new materials for the production of AEMs that meet
the demanding challenges of alkaline fuel cells and other
electrochemical processes. The general approach is versatile for
varying the length of the sideꢀchain and the cations, which may
35 be lead to further tuning and refinement of AEMs to address the
various separations and energyꢀfocused applications.
75 10 T. Xu, D. Wu and L. Wu, Prog. Polym. Sci., 2008, 33, 894–915.
11 J. Miyake, K. Fukasawa, M. Watanabe, K. Miyatake, J. Polym. Sci.,
Polym. Chem., 2014, 52, 383–389.
12 L. Wang and M. A. Hickner, Polym. Chem., 2014, 5, 2928–2935.
13 M. R. Hibbs, J. Polym. Sci., Polym. Phys., 2013, 51, 1736–1742.
80 14 C. G. Arges and V. Ramani, Proc. Natl. Acad. Sci. U.S.A. 2013, 110,
2490−2495.
15 S. A. Nuñez and M. A. Hickner, ACS Macro Lett., 2013, 2, 49–52.
16 B. Bae, B. H. Chun and D. Kim, Polymer, 2001, 42, 7879–7885.
17 G. Venugopal, J. Moore, J. Howard and S. Pendawar, J. Power
85
Sources., 1999, 77, 34–41.
18 H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto and D. R.
Lloyd, J. Membr. Sci., 2000, 179, 91–100.
19 G. K. Kostov and S. C. Turmanova, J. Appl. Polym. Sci., 1997, 64,
1469–1475.
90 20 W. M. Trochimczuk, J. Polym. Sci.: Polym. Chem. Ed., 1975, 13,
357–363.
21 S. M. Kolhe and A. Kumar, Radiat. Phys. Chem., 2005, 74, 384–
390.
22 T. C. Chung, Functionalization of Polyolefins; Academic Press:
95
100
105
London, 2002.
23 T. C. Chung, Prog. Polym. Sci., 2002, 27, 39–85.
24 G. Ruggeri, M. Aglietto, A. Petragnani and F. Ciardelli, Euro.
Polym. J., 1983, 19, 863–866.
25 M. Zhang, H. K. Kim, E. Chalkova, F. Mark, S. N. Lvov and T. C.
Chung, Macromolecules, 2011, 44, 5937–5946.
26 M. Zhang, X. Yuan, L. Wang, T. C. Chung, T. Huang and W.
deGroot, Macromolecules, 2014, 42, 571–581.
27 T. J. Clark, N. J. Robertson, H. A. Kostalik, E. B. Lobkovsky, P. F.
Mutolo, H. D. Abruña and G. W. Coats, J. Am. Chem. Soc., 2009,
131, 12888–12889.
Acknowledgement
This work was supported by the National Natural Science
Foundation of China under Grant 21404084 and 21474126, and
40 by the State Key Laboratory of Solidification Processing in
NWPU (Grand No. G8QT0298) and the 111 Project (B08040).
28 N. J. Robertson, H. A. Kostalik, T. J. Clark, P. F. Mutolo, H. D.
Abruña and G. W. Coats, J. Am. Chem. Soc., 2010, 132, 3400–3404.
29 C. Natta, J. Polym. Sci., 1960, 48, 219–239.
30 R. Bacskai, J. Polym. Sci: Part A., 1965, 3, 2491–2510.
110 31 W. Lin, Z. Shao, J. Dong and T. C. Chung, Macromolecules, 2009,
42, 3750–3754.
Notes and references
32 M. R. Hibbs, M. A. Hickner, T. M. Alam, S. K. Mcintyre, C.
Fujimoto, J. Cornelius, Chem. Mater., 2008, 20, 2566–2573.
33 M. Tanaka, M. Koike, K. Miyatake and M. Watanabe, Polym. Chem.
a
State Key Laboratory of Solidification Processing, Northwestern
Polytechnical
University,
Xi’an,
710072,
China.
Eꢀmail:
115
120
2011, 2, 99−106.
34 H. A. Kostalik, T. J. Clark, N. J. Robertson, P. F. Mutolo, J. M.
Longo, H. D. Abruña and G. W. Coates, Macromolecules, 2010, 43,
7147–7150.
35 J. Wang, J. Wang, S. Li and S. Zhang, J. Membr. Sci., 2011, 368,
246–253.
36 S. Chempath, J. M. Boncella, L. R. Pratt, N. Henson and B. S.
Pivovar, J. Phys. Chem. C., 2010, 114, 11977−11983.
37 N. Li, Q. Zhang, C. Wang, Y. M. Lee, M. D. Guiver,
Macromolecules, 2012, 45, 2411–2419.
b
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry,
Chinese Academy of Sciences, Taiyuan, 030001, China. Eꢀmail:
c
Department of Materials Science and Engineering, Advanced Materials
50 Processing and Analysis Center, University of Central Florida, Orlando,
FL 32816, USA
d State Key Laboratory of Engines, School of Mechanical Engineering,
Tianjin University, Tianjin 300072, China
e Collaborative Innovation Center of Chemical Science and Engineering
55 (Tianjin), Tianjin 300072, China
125 38 J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A.
Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer,
K. Scott, T. W. Xu and L. Zhuang, Energy. Environ. Sci., 2014, 7,
3135–3191.
† Electronic Supplementary Information (ESI) available: See DOI:
10.1039/b000000x/
12
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]