Table 3 Heck coupling of iodobenzene (1 mmol) with n-butyl acrylate (2 mmol) using pyrazole and benzothiazole palladacycles for 48 h at 90–110 °C in
DMF
Entry
Catalyst/mmol
Base (2 mmol)
T/°C
Conversiona (%)
TONb
Yieldc (%)
1
2
3
4
5
6
7
8
9
1b (5 3 1027
1b (5 3 1027
)
)
)
HCO2Na
MeCO2Na or MeCO2Cs
HCO2Na
MeCO2Na
HCO2Na
HCO2Na
K2CO3
K2CO3
K2CO3
K2CO3
K2CO3
100
100
100
100
100
100
110
90
75
< 10
74
0
93
100
100
78
98
98
1.5 3 106
—
—
—
—
—
—
50
78
—
—
—
—
1e (5 3 1027
1e (5 3 1027
1.48 3 106
—
)
)
1f (5 3 1027
1a (5 3 1027
1a (5 3 1027
1.8 3 106
2 3 106
2 3 106
7.8 3 105
9.8 3 104
9.8 3 104
1 3 105
)
)
2c (1 3 1026
)
2b (1 3 1025
2e (1 3 1025
2f (1 3 1025
)
90
90
90
10
11
)
)
100
a Conversion estimated by NMR spectroscopy. b TON based on consumption of iodobenzene. c Isolated yields.
1 h when either sodium or potassium formate were used (entries
1, 3, 6 and 7). Sodium acetate was the least effective of the bases
evaluated (entry 4), with only 29% conversion after 1 h.
Turnover numbers are summarised in Table 3 for the Heck
reaction of iodobenzene (1 mmol) and n-butyl acrylate (2
mmol) using either HCO2Na (2 mmol) or K2CO3 (2 mmol) as
base in DMF at 90–110 °C for 48 h.
We thank Leeds University, the ORS (X. G.) and Johnson
Matthey for support.
Notes and references
1 For a recent review, see: W. A. Herrmann, V. P. W. Bohm and C.-P.
Reisinger, J. Organomet. Chem., 1999, 576, 23.
2 W. A. Herrmann, C. Brossmer, K. Ofele, C.-P. Riesinger, T. Priermeier,
M. Beller and H. Fischer, Angew. Chem., Int. Ed. Engl., 1995, 34, 1844;
M. Beller, H. Fischer, W. A. Herrmann, K. Ofele and C. Brossmer,
Angew. Chem., Int. Ed. Engl., 1995, 34, 1848.
3 M. Ohff, A. Ohff, M. E. Van der Boom and D. Milstein, J. Am. Chem.
Soc., 1997, 119, 11687; K. Kiewel, Y. Liu, D. E. Bergbreiter and G. A.
Sulikowski, Tetrahedron Lett., 1999, 40, 8945.
Although TONs of up to 2 3 106 can be achieved when
employing sodium formate as base (entry 6) competitive
reduction of the aryl iodide bond results in lower isolated yield
of Heck product (50%). Employing potassium carbonate as base
resulted in a TON of 2 3 106 (entry 7) and 78% isolated
yield.
Finally we have briefly explored the scope of these catalysts
in a three-component cascade process.15 Typical examples are
shown in Scheme 2.
4 B. L. Shaw, S. D. Perera and E. E. Staley, Chem. Commum., 1998,
2095.
5 D. A. Albisson, R. B. Bedford, S. E. Lawrence and P. N. Scully, Chem.
Commun., 1998, 2095.
6 F. Miyazaki, K. Yamaguchi and M. Shibasaki, Tetrahedron Lett., 1999,
40, 7379.
7 I. P. Beletskaya, A. V. Churchurjukin, H. P. Dijkstra, G. P. M. Van
Klink and G. VanKoten, Tetrahedron Lett., 2000, 41, 1075.
8 M. Ohff, A. Ohff and D. Milstein, Chem. Commun., 1999, 357; H.
Weissman and D. Milstein, Chem. Commun., 1999, 1901; D. A. Alonso,
C. Najera and M. C. Pacheco, Org. Lett., 2000, 13, 1823.
9 W. A. Herrmann, M. Elison, J. Fischer, C. Kocher and G. R. J. Artus,
Angew. Chem., Int. Ed. Engl., 1995, 34, 2371; W. A. Herrmann, C.-P.
Reisinger and M. J. Splieger, J. Organomet. Chem., 1998, 557, 93.
10 1a–f and 2a–f are new compounds prepared from the ligand (1 eq.) and
Pd(OAc)2 (1 eq.) in acetic acid and 100–120 °C over 2–5 h. The ligands
were prepared by conventional ring synthetic methods for pyrazoles and
benzothiazoles.11
11 Pyrazoles: J. Elguero, in Comprehensive Heterocyclic Chemistry, ed.
A. R. Katritsky and C. W. Rees, Pergamon, 1st edn., 1984, vol. 5, p. 167
et seq; benzothiazoles: J. Metzger, Comprehensive Heterocyclic
Chemistry, ed. A. R. Katritsky and C. W. Rees, Pergamon, 1st edn.,
1984, vol. 6, p. 235 et seq.
12 B. L. Shaw, New J. Chem., 1998, 77.
13 D. G. Blackmond, J. S. Bradly, J. Lebers and U. Specht, Langmuir,
1999, 15, 7621.
Scheme 2
In conclusion, we have developed a range of non-phosphine
palladacycles which are efficient catalysts with high TONs for
Heck reactions under mild conditions and with relatively short
reaction times. Studies on other Heck substrates and the
mechanism are in progress.
14 M. Reetz and A. Westermann, Angew. Chem., Int. Ed., 2000, 39, 165.
15 R. Grigg and V. Sridharan, J. Organomet. Chem., 1999, 576, 65.
2054
Chem. Commun., 2000, 2053–2054