JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
8 (a) C.-G. Wu, M.-I. Lu, S.-J. Chang, C.-S. Wei, Adv. Funct.
Mater. 2007, 17, 1063–1070; (b) F. S. Han, M. Higuchi, D. G.
Kurth, J. Am. Chem. Soc. 2008, 130, 2073–2081; (c) A. Maier, A.
R. Rabindranath, B. Tieke, Chem. Mater. 2009, 21, 3668–3676;
(d) M. A. Invernale, Y. Ding, D. M. D. Mamangun, M. S. Yavuz,
G. A. Sotzing Adv. Mater. 2010, 22, 1379–1382; (e) M. A.
Invernale, Y. Ding, G. A. Sotzing, ACS Appl. Mater. Interfaces
2010, 2, 296–300; (f) M. I. Ozkut, S. Atak, A. M. Onal, A.
Cihaner, J. Mater. Chem. 2011, 21, 5268–5272; (g) F. Baycan
Koyuncu, E. Sefer, S. Koyuncu, E. Ozdemir, Macromolecules
2011, 44, 8407–8414.
CONCLUSIONS
A
series of novel carbazole and triphenylamine-
functionalized aromatic polyamides were readily prepared
from the newly synthesized aromatic diamine monomer 4,40-
diamino-400-(3,6-dimethoxycarbazol-9-yl)triphenylamine with
various aromatic dicarboxylic acids via the phosphorylation
polyamidation reaction. Because of the introduction of three-
dimensional triphenylamine units and bulky 3,6-dimethoxy-
carbazole pendent groups in polymer backbone, all the
polymers were amorphous, had good solubility in many polar
aprotic solvents, and exhibited excellent film-forming ability.
All the obtained polyamides revealed good electrochemical
and electrochromic stability along with multielectrochromic
behavior and enhanced NIR absorption upon oxidation. By
substitution of the electrochemically active C-3 and C-6 sites
of the carbazole unit with electron-donating methoxy groups,
the new polyamides exhibit greatly enhanced electrochemical
stability and electrochromic performance in comparison with
previously reported analogs without methoxy substituents on
the carbazole moiety. Such prominent features make these
processable polymers amenable for optoelectronic applica-
tions such as OLEDs and electrochromic devices.
9 (a) C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51,
913–915; (b) Y. Shirota, J. Mater. Chem. 2005, 15, 75–93; (c) Y.
Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953–1010.
10 (a) M.-Y. Chou, M.-k. Leung, Y. O. Su, C. L. Chiang, C.-C.
Lin, J.-H. Liu, C.-K. Kuo, C.-Y. Mou, Chem. Mater. 2004, 16,
654–661; (b) L. Otero, L. Sereno, F. Fungo, Y.-L. Liao, C.-Y. Lin,
K.-T. Wong, Chem. Mater. 2006, 18, 3495–3502; (c) B. Lim, Y.-C.
Nah, J.-T. Hwang, J. Ghim, D. Vak, J.-M. Yun, D.-Y. Kim, J.
Mater. Chem. 2009, 19, 2380–2385; (d) J. Natera, L. Otero, F.
D’Eramo, L. Sereno, F. Fungo, N.-S. Wang, Y.-M. Tsai, K.-T.
Wong, Macromolecules 2009, 42, 626–635; (e) H.-Y. Wu, K.-L.
Wang, D.-J. Liaw, K.-R. Lee, J.-Y. Lai, J. Polym. Sci. Part A:
Polym. Chem. 2010, 48, 1469–1476; (f) H.-J. Yen, G.-S. Liou,
Polym. Chem. 2012, 3, 255–264.
11 M. Thelakkat, Macromol. Mater. Eng. 2002, 287, 442–461.
12 (a) E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D.
W. Leedy, R. N. Adams, J. Am. Chem. Soc. 1966, 88, 3498–
3503; (b) R. F. Nelson, R. N. Adams, J. Am. Chem. Soc. 1968,
90, 3925–3930.
ACKNOWLEDGMENT
The authors thank the National Science Council of Taiwan
for the financial support.
13 (a) S.-H. Cheng, S.-H. Hsiao, T.-H. Su, G.-S. Liou, Macromo-
lecules 2005, 38, 307–316; (b) G.-S. Liou, S.-H. Hsiao, H.-W.
Chen, J. Mater. Chem. 2006, 16, 1831–1842; (c) S.-H. Hsiao, G.-
S. Liou, Y.-C. Kung, H.-J. Yen, Macromolecules 2008, 41, 2800–
2808; (d) Y.-C. Kung, G.-S. Liou, S.-H. Hsiao, J. Polym. Sci. Part
A: Polym. Chem. 2009, 47, 1740–1755; (e) S.-H. Hsiao, G.-S.
Liou, Y.-C. Kung, H.-Y. Pan, C.-H. Kuo, Eur. Polym. J. 2009, 45,
2234–2248; (f) Y.-C. Kung, S.-H. Hsiao, J. Mater. Chem. 2011,
21, 1746–1754; (g) Y.-C. Kung, W.-F. Lee, S.-H. Hsiao, G.-S.
Liou, J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 2210–2221;
(h) Y.-C. Kung, S.-H. Hsiao, J. Polym. Sci. Part A: Polym. Chem.
2011, 49, 3475–3490.
REFERENCES AND NOTES
1 P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, Electro-
chromism and Electrochromic Devices; Cambridge University
Press: Cambridge, UK, 2007.
2 (a) D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13,
783–793; (b) A. Michaelis, H. Berneth, D. Haarer, S. Kostromine,
R. Neigl, R. Schmidt, Adv. Mater. 2001, 13, 1825–1828; (c) H. W.
Heuer, R. Wehrmann, S. Kirchmeyer, Adv. Funct. Mater. 2002,
12, 89–94; (d) R. Baetens, B. P. Jelle, A. Gustavsen, Sol. Energy
Mater. Sol. Cells 2010, 94, 87–105.
14 J. M. Garcia, F. C. Garcia, F. Serna, J. L. de la Pena, Prog.
Polym. Sci. 2010, 35, 623–686.
3 G. Sonmez, H. B. Sonmez, J. Mater. Chem. 2006, 16, 2473–
2477.
15 (a) S.-H Hsiao, Y.-M. Chang, H.-W. Chen, G.-S. Liou, J.
Polym. Sci. Part A: Polym. Chem. 2006, 44, 4579–4592; (b) C.-
W. Chang, G.-S. Liou, S.-H. Hsiao, J. Mater. Chem. 2007, 17,
1007–1015; (c) S.-H., Hsiao, G.-S. Liou, Y.-C. Kung, Y.-M.
Chang, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 2798–
2809.
4 (a) G. Sonmez, F. Wudl, J. Mater. Chem. 2005, 15, 20–22; (b)
R. J. Mortimer, A. L. Dyer, J. R. Reynolds, Displays 2006, 27, 2–
18; (c) P. Andersson, R. Forchheimer, P. Tehrani, M. Berggren,
Adv. Funct. Mater. 2007, 17, 3074–3082; (d) F. C. Krebs, Nat.
Mater. 2008, 7, 766–767.
5 (a) S. Beaupre, J. Dumas, M. Leclerc, Chem. Mater. 2006, 18,
4011–4018; (b) S. Beaupre, A.-C. Breton, J. Dumas, M. Leclerc,
Chem. Mater. 2009, 21, 1504–1513.
16 (a) M.-H. Tsai, T.-H. Ke, H.-W. Lin, C.-C. Wu, S.-F. Chiu, F.-C.
Fang, Y.-L. Liao, K.-T. Wong, Y.-H. Chen, C.-I. Wu, ACS Appl.
Mater. Interfaces 2009, 1, 567–574; (b) Y.-T. Tao, Q. Wang, C.-L.
Yang, C. Zhong, K. Zhang, J.-G. Qin, D.-G. Ma, Adv. Funct.
Mater. 2010, 20, 304–311; (c) W. Jiang, L. Duan, J. Qiao, G. F.
Dong, D.-Q. Zhang, L.-D. Wang, Y. Qiu, J. Mater. Chem. 2011, 21,
4918–4926; (d) L.-X. Xiao, Z.-J. Chen, B. Qu, J.-X. Luo, S. Kong,
Q.-H. Gong, J. Kido, Adv. Mater. 2011, 23, 926–952; (e) Y.-T. Tao,
C.-L. Yang, J.-G. Qin, Chem. Soc. Rev. 2011, 40, 2943–2970.
6 (a) P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110,
268–320; (b) C. M. Amb, A. L. Dyer, J. R. Reynolds, Chem.
Mater. 2011, 23, 397–415; (c) A. L. Dyer, E. J. Thompson, J. R.
Reynolds, ACS Appl. Mater. Interfaces 2011, 3, 1787–1795; (d)
A. Patra, M. Bendikov, J. Mater. Chem. 2010, 20, 422–433; (e)
A. Balan, D. Baran, L. Toppare, Polym. Chem. 2011, 2, 1029–
1043; (f) G. Gunbas, L. Toppare, Chem. Commun. 2012, 48,
1083–1101.
17 J. P. Chen, A. Natansohn, Macromolecules 1999, 32, 3171–3177.
18 (a) J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, K.
Pielichowski, Prog. Polym. Sci. 2003, 28, 1297–1353; (b) J.-F.
Morin, M. Leclerc, D. Ades, A. Siove, Macromol. Rapid Com-
mun. 2005, 26, 761–778; (c) S. Walkim, B.-R. Aich, Y. Tao,
M. Leclerc, Polym. Rev. 2008, 48, 432–462; (d) N. Blouin, M.
7 (a) L. Groenendaal, G. Zotti, P.-H. Aubert, S. M. Waybright, J.
R. Reynolds, Adv. Mater. 2003, 15, 855–879; (b) J. Roncali, P.
Blanchard, P. Frere, J. Mater. Chem. 2005, 15, 1589–1610; (c) S.
Kirchmeyer, K. Reuter, J. Mater. Chem. 2005, 15, 2077–2088.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 272–286
285