M. Rajasekar et al. / Spectrochimica Acta Part A 92 (2012) 207–211
211
benzophenone semicarbazone [11] and benzophenone thiosemi-
carbazone [13] exhibit SHG emitting a green light on exposure to
064 nm Nd:YAG laser (Table 3). In these crystals there is a favor-
able molecular arrangement facilitating nonlinearity.
[3] W.H. Hartung, F. Crossley, Org. Synth. (1943) 363–364 (Coll. vol. II).
[
4] R.R. Kamble, S.S. Belgur, R. Aladkatti, I.A. Khazi, Chem. Pharm. Bull. 57 (2009)
16–21.
1
[
5] I. Georgieva, N. Trendafilova, G. Bauer, Spectrochim. Acta A 63 (2006) 403–415.
[6] K. Sankaranarayanan, P. Ramasamy, J. Cryst. Growth 280 (2005) 467–473.
[7] K. Sankaranarayanan, P. Ramasamy, J. Cryst. Growth 292 (2006) 445–448.
[8] G. Anandha Babu, P. Ramasamy, J. Cryst. Growth 310 (2008) 3561–3567.
[9] G. Anandha Babu, P. Ramasamy, Mater. Chem. Phys. 119 (2010) 533–538.
4
. Conclusions
[
[
10] G. AnandhaBabu, R. Perumal Ramasamy, P. Ramasamy, S. Natarajan, J. Cryst.
Growth 311 (2009) 3461–3465.
11] N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, S. Dhanuskodi, P. Ramasamy, J.
Cryst. Growth 236 (2002) 407–412.
Single crystals of benzophenone oxime (BPO) were grown from
their ethanol solution using slow evaporation solution growth tech-
nique for the first time. The product formation was qualitatively
confirmed by FT-IR. The powder X-ray diffraction and HRXRD stud-
ies reveal the structure and crystalline perfection of the grown
crystal. The additional peaks in HRXRD indicate the formation of
low angle structural grain boundaries. Thermal analysis confirms
no decomposition of the crystal up to the melting point. The opti-
cal absorption shows excellent transmission in the entire visible
region. The dielectric constant, dielectric loss and AC conductiv-
ity establish a normal behavior. Mechanical study on the crystals
confirms the hardness behavior of the material. Studies reveal that
this crystal is a promising material for the device fabrications in
microelectronic industries.
[12] K. Sethuraman, R. Ramesh Babu, N. Vijayan, R. Gopalakrishnana, P. Ramasamy,
J. Cryst. Growth 290 (2006) 539–543.
[
[
13] C. Ravikumar, I. Hubert Joe, J. Raman Spectrosc. 42 (2011) 815–824.
14] M. Gulam Mohamed, K. Rajarajan, G. Mani, M. Vimalan, K. Prabha, J. Madhavand,
P. Sagayaraj, J. Cryst. Growth 300 (2007) 409–414.
[15] F. Pan, J.N. Sherwood, G.S. Simpson, J. Mater. Chem. 7 (1997) 1383–1388.
[
[
[
[
16] S.K. Kushwaha, N. Vijayan, K.K. Maurya, A. Kumar, Binay Kumar, K. Somayajulu,
G. Bhagavannarayana, J. Appl. Crystallogr. 44 (2011) 839–845.
17] C.C. Frazier, M.P. Cockerham, E.A. Chauchard, C.H. Lee, J. Opt. Soc. Am. B 4 (1987)
1899.
18] M.P. Cockerham, C.C. Frazier, S. Guha, E.A. Chauchard, Appl. Phys. B 53 (1991)
275–278.
19] A.I. Vogel, Practical Organic Chemistry, 5th ed., 1989, p. 1259.
[20] V.V. Sharutin, O.K. Sharutina, O.V. Molokova, E.N. Ettenko, D.B. Krivolapov, A.D.
Gubaidullin, I.A. Litvinov, Russ. J. Gen. Chem. 72 (2002) 893–898.
[
21] K. Lal, G. Bhagavannarayana, J. Appl. Crystallogr. 22 (1989) 209–215.
[
22] G. Bhagavannarayana, S.K. Kushwaha, J. Appl. Crystallogr. 43 (2010) 154–162.
Acknowledgement
[23] G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bart-
wal, J. Appl. Crystallogr. 38 (2005) 768–771.
[
24] G. Bhagavannarayana, P. Rajesh, P. Ramasamy, J. Appl. Crystallogr. 43 (2010)
372–1376.
[25] E.M. Onitsch, Mikroskopie 2 (1947) 131–151.
26] P.N. Prasad, G. Prasad, T. Bhimasankaran, S.V. Suryanarayan, G.S. Kumar, Indian
J. Pure Appl. Phys. 4 (5) (1996) 639.
One of the authors, K. Muthu is thankful to CSIR, New Delhi, for
the award of a Senior Research Fellowship.
1
[
References
[
27] A.K. Jonscher, Nature 267 (1997) 673–679.
[
28] M. Priya, C.K. Mahadevan, Physica B 403 (2008) 67–74.
[
[
1] R.H. Barry, W.H. Hartung, J. Org. Chem. 12 (1947) 460–468.
2] O. Touster, Org. React. 7 (1953) 327–377.
[29] S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798–3813.