Garrigós‑Martínez et al. Microb Cell Fact
(2021) 20:90
Page 12 of 13
10. Worsch A, Eggimann FK, Girhard M, Bühler CJ, Tieves F, Czaja R, et al. A
novel cytochrome P450 mono‑oxygenase from Streptomyces platensis
resembles activities of human drug metabolizing P450s. Biotechnol
Bioeng. 2018;115:2156–66.
11. Urlacher VB, Girhard M. Cytochrome P450 monooxygenases in biotech‑
nology and synthetic biology. Trends Biotechnol. 2019;37:882–97.
12. Urlacher VB, Girhard M. Cytochrome P450 monooxygenases: an
update on perspectives for synthetic application. Trends Biotechnol.
2012;30:26–36.
13. Cojocaru V, Balali‑Mood K, Sansom MSP, Wade RC. Structure and dynam‑
ics of the membrane‑bound cytochrome P450 2C9. PLoS Comput Biol.
2011;7:e1002152.
14. Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Mammalian
microsomal cytochrome P450 monooxygenase. Mol Cell. 2000;5:121–31.
15. Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and
disease. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120431.
16. Hausjell J, Halbwirth H, Spadiut O. Recombinant production of
eukaryotic cytochrome P450s in microbial cell factories. Biosci Rep.
2018;38:BSR20171290.
17. Olaofe OA, Fenner CJ, Gudiminchi RK, Smit MS, Harrison ST. The infuence
of microbial physiology on biocatalyst activity and efciency in the termi‑
nal hydroxylation of n‑octane using Escherichia coli expressing the alkane
hydroxylase, CYP153A6. Microb Cell Fact. 2013;12:8.
18. Quehl P, Hollender J, Schüürmann J, Brossette T, Maas R, Jose J. Co‑
expression of active human cytochrome P450 1A2 and cytochrome
P450 reductase on the cell surface of Escherichia coli. Microb Cell Fact.
2016;15:26.
19. Forman V, Bjerg‑Jensen N, Dyekjær JD, Møller BL, Pateraki I. Engineering
of CYP76AH15 can improve activity and specifcity towards forskolin
biosynthesis in yeast. Microb Cell Fact. 2018;17:181.
20. Hanlon SP, Friedberg T, Wolf CR, Ghisalba O, Kittelmann M. Recombinant
yeast and bacteria that express human P450s: bioreactors for drug
discovery, development, and biotechnology. In: Schmid RD, Urlacher VB,
editors. Modern biooxidation, vol. 10. Weinheim: Wiley; 2007. p. 233–52.
21. Rushmore TH, Reider PJ, Slaughter D, Assang C, Shou M. Bioreactor
systems in drug metabolism: synthesis of cytochrome P450‑generated
metabolites. Metab Eng. 2000;2:115–25.
22. Vail RB, Homann MJ, Hanna I, Zaks A. Preparative synthesis of drug
metabolites using human cytochrome P450s 3A4, 2C9 and 1A2 with
NADPH‑P450 reductase expressed in Escherichia coli. J Ind Microbiol
Biotechnol. 2005;32:67–74.
23. Drăgan C‑A, Peters FT, Bour P, Schwaninger AE, Schaan SM, Neunzig I,
et al. Convenient gram‑scale metabolite synthesis by engineered fssion
yeast strains expressing functional human P450 systems. Appl Biochem
Biotechnol. 2011;163:965–80.
24. Neunzig I, Göhring A, Drăgan C‑A, Zapp J, Peters FT, Maurer HH, et al.
Production and NMR analysis of the human ibuprofen metabolite
3‑hydroxyibuprofen. J Biotechnol. 2012;157:417–20.
25. Neunzig I, Widjaja M, Peters FT, Maurer HH, Hehn A, Bourgaud F, Bureik
M. Coexpression of CPR from various origins enhances biotransforma‑
tion activity of human CYPs in S. pombe. Appl Biochem Biotechnol.
2013;170:1751–66.
32. Garrigós‑Martínez J, Nieto‑Taype MA, Gasset‑Franch A, Montesinos‑Seguí
JL, Garcia‑Ortega X, Valero F. Specifc growth rate governs AOX1 gene
expression, afecting the production kinetics of Pichia pastoris (Komaga-
taella phafi) PAOX1‑driven recombinant producer strains with diferent
target gene dosage. Microb Cell Fact. 2019;18:187.
33. Rebnegger C, Graf AB, Valli M, Steiger MG, Gasser B, Maurer M, et al. In
Pichia pastoris, growth rate regulates protein synthesis and secretion,
mating and stress response. Biotechnol J. 2014;9:511–25.
34. Nieto‑Taype MA, Garrigós‑Martínez J, Sánchez‑Farrando M, Valero F, Gar‑
cia‑Ortega X, Montesinos‑Seguí JL. Rationale‑based selection of optimal
operating strategies and gene dosage impact on recombinant protein
production in Komagataella phafi (Pichia pastoris). Microb Biotechnol.
2019;13(2):315–27.
35. García‑Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos‑Seguí JL, Valero
F. Rational development of bioprocess engineering strategies for recom‑
binant protein production in Pichia pastoris (Komagataella phafi) using
the methanol‑free GAP promoter. Where do we stand? N Biotechnol.
2019;53:24–34.
36. Nieto‑Taype MA, Garcia‑Ortega X, Albiol J, Montesinos‑Seguí JL, Valero F.
Continuous cultivation as a tool toward the rational bioprocess develop‑
ment with Pichia Pastoris cell factory. Front Bioeng Biotechnol. 2020;8:632.
37. Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler
EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth
N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters
enable rapid multi‑gene co‑expression optimization. Nat Commun.
2018;9:3589.
38. Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl A‑M,
Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A. A
toolbox of diverse promoters related to methanol utilization: functionally
verifed parts for heterologous pathway expression in Pichia pastoris. ACS
Synth Biol. 2016;5:172–86.
39. Fischer JE, Hatzl A‑M, Weninger A, Schmid C, Glieder A. Methanol inde‑
pendent expression by Pichia pastoris employing de‑repression technolo‑
gies. J Vis Exp. 2019;143:e58589.
40. Rußmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guer‑
rasio R, Klavins K, Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A,
Krebiehl G, Sonntag D, Zellnig G, Daum G, Graf AB, Altmann F, Koe‑
llensperger G, Hann S, Sauer M, Mattanovich D, Gasser B. Systems‑level
organization of yeast methylotrophic lifestyle. BMC Biol. 2015;13:80.
41. Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A. Reliable
high‑throughput screening with Pichia pastoris by limiting yeast cell
death phenomena. FEMS Yeast Res. 2004;5:179–89.
42. Barrigón JM, Montesinos JL, Valero F. Searching the best operational
strategies for Rhizopus oryzae lipase production in Pichia pastoris Mut+
phenotype: methanol limited or methanol non‑limited fed‑batch cul‑
tures? Biochem Eng J. 2013;75:47–54.
43. Arnau C, Casas C, Valero F. The efect of glycerol mixed substrate on the
heterologous production of a Rhizopus oryzae lipase in Pichia pastoris
system. Biochem Eng J. 2011;57:30–7.
44. Capone S, Horvat J, Herwig C, Spadiut O. Development of a mixed feed
strategy for a recombinant Pichia pastoris strain producing with a de‑
repression promoter. Microb Cell Fact. 2015;14:101.
26. Ramón A, Marín M. Advances in the production of membrane proteins in
Pichia pastoris. Biotechnol J. 2011;6:700–6.
27. Byrne B. Pichia pastoris as an expression host for membrane protein
structural biology. Curr Opin Struct Biol. 2015;32:9–17.
45. Garcia‑Ortega X, Ferrer P, Montesinos JL, Valero F. Fed‑batch operational
strategies for recombinant Fab production with Pichia pastoris using the
constitutive GAP promoter. Biochem Eng J. 2013;79:172–81.
46. Looser V, Lüthy D, Straumann M, Hecht K, Melzoch K, Kovar K. Efects of
glycerol supply and specifc growth rate on methanol‑free production of
CALB by P. pastoris: functional characterisation of a novel promoter. Appl
Microbiol Biotechnol. 2017;101:3163–76.
47. Rajamanickam V, Metzger K, Schmid C, Spadiut O. A novel bi‑directional
promoter system allows tunable recombinant protein production in
Pichia pastoris. Microb Cell Fact. 2017;16:152.
48. Garcia‑Ortega X, Adelantado N, Ferrer P, Montesinos JL, Valero F. A step
forward to improve recombinant protein production in Pichia pastoris:
from specifc growth rate efect on protein secretion to carbon‑starving
conditions as advanced strategy. Process Biochem. 2016;51:681–91.
49. Jungo C, Rérat C, Marison IW, von Stockar U. Quantitative characteriza‑
tion of the regulation of the synthesis of alcohol oxidase and of the
expression of recombinant avidin in a Pichia pastoris Mut+ strain. Enzyme
Microb Technol. 2006;39:936–44.
28. Suades A, Alcaraz A, Cruz E, Álvarez‑Marimon E, Whitelegge JP, Manyosa
J, Cladera J, Perálvarez‑Marín A. Structural biology workfow for the
expression and characterization of functional human sodium glucose
transporter type 1 in Pichia pastoris. Sci Rep. 2019;9:1203.
29. Claes K, Vandewalle K, Laukens B, Laeremans T, Vosters O, Langer I, et al.
Modular integrated secretory system engineering in Pichia pastoris
to enhance G‑protein coupled receptor expression. ACS Synth Biol.
2016;5:1070–5.
30. Çalık P, Ata Ö, Güneş H, Massahi A, Boy E, Keskin A, et al. Recombinant
protein production in Pichia pastoris under glyceraldehyde‑3‑phosphate
dehydrogenase promoter: from carbon source metabolism to bioreactor
operation parameters. Biochem Eng J. 2015;95:20–36.
31. Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Foti‑
adis D, Kovar K. Cultivation strategies to enhance productivity of Pichia
pastoris: a review. Biotechnol Adv. 2014;33:1177–93.