566 JOURNAL OF CHEMICAL RESEARCH 2015
8
9
J. W. Drijfhout and W. Bloemhoff, Peptide Chemistry, 1988, Volume Date
1987, 191 (Chem. Abstr., 1988, 109, 211458).
Y. G. Kim, S. K. Kim, M. S. Kim and Y. B. Roh, PCT Int. Appl., 2003, WO
2003021707 A1 20030313.
dioxane–10% H2O (or D2O) at 9.7 to 17.2°C of 1.45, which is
appreciably lower than the range of 2.7 to 3.944-46 observed for
the solvolyses of cyclic carboxylic anhydrides in more aqueous
solvents. While alternative explanations are possible, this is
consistent with the higher reactivity of the mixed anhydrides
leading to a lower selectivity as regards reaction with H2O or
D2O.
The bimolecular (or higher) nature of the solvolyses of
SBA is supported by studies at several temperatures leading
to frequency factors5 which convert to entropies of activation
in the –10 to –29 cal mol-1 K-1 range. These values are similar
into those obtained for p-nitrobenzoyl tosylate solvolysis1 and
considerably more negative than those for benzoyl tosylate
solvolysis,1 consistent with an addition–elimination pathway,
rather than an ionisation pathway, for the solvolyses of SBA.
10 N. I. Kim, U. S. Pat. Appl. Publ., 2005, US 20050233207 A1 20051020.
11 N. -R. Park, J. -B. Kim, J. -S. Kim and J. H. Lim, US Pat. Appl. Publ., 2009, US
20090155697 A1 20090618.
12 E. P. Jutemar and P. Jannasch, J. Membr. Sci., 2010, 351, 87.
13 L. E. Karlsson and P. Jannasch, Electrochim. Acta., 2005, 50, 1939.
14 J. J. Kennan and M. K. -J. Lee, PCT Int. Appl., 2006, WO 2006065467 A2
20060622.
15 J. Zhang, M. R. Dubay, C. J. Houtman and S. J. Severtson, Macromolecules,
2009, 42, 5080.
16 C. -D. Vo, P. D. Iddon and S. P. Ames, Polymer, 2007, 48, 1193.
17 R. M. Laird and M. J. Spence, J. Chem Soc. (B), 1971, 1434.
19 T. W. Bentley, F. L. Schadt and P. v. R. Schleyer, J. Am. Chem. Soc., 1972, 94,
992.
20 F. L. Schadt, T. W. Bentley and P. v. R. Schleyer, J. Am. Chem. Soc., 1976,
98, 7667.
Experimental
23 D. N. Kevill in Advances in quantitative structure-property relationships, Vol.
1, ed. M. Charton, JAI Press, Greenwich, CT, 1996, pp. 81-115.
26 D. N. Kevill and M. J. D’Souza, J. Phys. Org. Chem., 2002, 15, 881.
27 D. N. Kevill and M. J. D’Souza, J. Org. Chem., 2004, 69, 7044.
28 D. N. Kevill, F. Koyoshi and M. J. D’Souza, Int. J. Mol. Sci., 2007, 8, 346.
29 D. N. Kevill and M. J. D’Souza, Recent Res. Devel. Org. Chem., 2013, 13, 1-38.
30 M. J. D’Souza, B. Sandosky, G. A. Fernandez-Bueno, M. J. McAneny and D.
N. Kevill, Can. Chem. Trans., 2014, 2, 160.
The 2-sulfobenzoic acid cyclic anhydride (SBA, TCI >95%) was used
as-received. For determination of the specific rates of solvolysis, a 0.1
M solution of SBA in dry acetonitrile was prepared and 20 µL at room
temperature was added to 2 mL of the appropriate solvent contained
within a conductivity cell at –10.0 °C to give a 1×10-3 mol L-1 solution
of the reactant.
The progress of the reaction was monitored by following the
increases in conductivity as the mixed diacid (reaction with water) and/
or carboxylic acid ester derivative of the diacid (reaction with alcohol)
were produced (Scheme 1), as previously described.1 Details of the
conductivity apparatus and the computer procedure for calculation
of the specific rates have previously been reported.50,51 The multiple
regression analyses were performed using commercially available
statistical packages.
32 L. P. Hammett, Physical organic chemistry, 2nd edn. McGraw-Hill, New
York, NY, 1970, pp. 355-376.
33 H. H. Jaffé, Chem. Rev., 1953, 53, 227.
34 E. Andersen, E. A. Birkhimer and T. A. Bak, Acta Chem. Scand., 1960, 14,
1899.
35 J. W. Baker and H. B. Hopkins, J. Chem. Soc., 1949, 1089.
36 R. E. Robertson, Can. J. Chem., 1953, 31, 589.
37 M. H. Abraham, P. L. Grellier, J. -L. M. Abboud, R. M. Doherty and R. W. Taft,
Can. J. Chem., 1988, 66, 2673.
38 I. Lee, Chem. Soc. Rev., 1990, 19, 17.
40 D. N. Kevill and M. J. D’Souza, J. Chem. Soc. Perkin Trans. 2, 1994, 945.
41 V. Gold and J. Hilton, J. Chem. Soc., 1955, 843.
This research was supported by the donors of the American
Chemical Society Petroleum Research Fund (PRF#38163-
AC4). Z. H. R. thanks Dong-Eui University for support of
this work during the 2005 research year. We thank Professor
Malcolm J. D’Souza (Wesley College, Dover, Delaware,
USA) for helpful discussions and assistance with the multiple
correlation analyses.
42 J. Koskikallio, D. Pouli and E. Whalley, Can. J. Chem., 1959, 37, 1360.
43 C. A. Bunton, J. H. Fendler, N. A. Fuller, S. Perry and J. Rocek, J. Chem. Soc.,
1965, 6174.
44 A. R. Butler and V. Gold, J. Chem. Soc., 1961, 2305.
45 A. R. Butler and V. Gold, J. Chem. Soc., 1962, 2212.
46 K. R. Davis and J. L. Hogg, J. Org. Chem., 1983, 48, 1041.
47 A. Kivinen, The chemistry of the acyl halides, part of the series The chemistry
of the functional groups, ed. S. Patai. Wiley-Interscience, New York, 1972,
p. 185.
48 C. A. Bunton, N. A. Fuller, S. G. Perry and V. J. Shiner, J. Chem. Soc., 1963,
2918.
49 S. L. Johnson, Adv. Phys. Org. Chem., 1967, 5, 237.
50 I. Lee, H. W. Lee, T. S. Uhm, D. D. Sung and Z. H. Ryu, J. Korean Chem. Soc.,
1988, 32, 85.
Received 9 June 2015; accepted 23 August 2015
Published online: 2 October 2015
References
1
2
3
D. N. Kevill and Z. H. Ryu, J. Phys. Org. Chem., 2013, 26, 983.
D. N. Kevill and Z. H. Ryu, J. Chem. Res., 2014, 38, 387.
4
5
6
7
D. N. Kevill and M. J. D’Souza, J. Chem. Res., 2008, 61.
R. M. Laird and M. J. Spence, J. Chem. Soc. (B), 1970, 388.
R. M. Laird and M. J. Spence, J. Chem. Soc. (B), 1971, 454.
M. Leven, J. M. Nuedoerfl, and B. Goldfuss, Beilstein J. Org. Chem, 2013,
9, 155.
51 H. J. Koh, K. L. Han, H. W. Lee and I. Lee, J. Org. Chem., 1998, 63, 9834.