A. Leyris et al. / Tetrahedron Letters 46 (2005) 8677–8680
8679
CNRS, for its financial support. A.L. acknowledges
MENRT for a doctoral fellowship.
References and notes
1. (a) Bhattacharya, A. K.; Roy, N. K. Method of Prepa-
ration of Phosphine Chalcogenides. In The Chemistry of
Organophosphorous Compounds; Hartley, F. R., Ed.;
Wiley: Chichester, 1992; Vol. 2, pp 195–285; (b) Edmund-
son, R. S. Chemical Properties and Reactions of
Phosphine Chalcogenides. In The Chemistry of Organo-
phosphorous Compounds; Hartley, F. R., Ed.; Wiley:
Chichester, 1992; Vol. 2, pp 287–407; (c) Pietrusiewicz,
K. M.; Zablocka, M. Chem. Rev. 1994, 94, 1375–1411.
2. (a) Drabowicz, J.; Lyzwa, P.; Omelanczuk, J.; Pie-
trusiewicz, K. M.; Mikolajczyk, M. Tetrahedron: Asym-
metry 1999, 10, 2757–2763; (b) Haynes, R. K.; Freeman,
R. N.; Mitchell, C. R.; Vonwiller, S. C. J. Org. Chem.
1994, 59, 2919–2921.
3. (a) Freeman, R. N.; Haynes, R. K.; Loughlin, W. A.;
Mitchell, C. R.; Strokes, J. V. Pure Appl. Chem. 1993, 65,
647–654; (b) Haynes, R. K.; Au-Yeung, T. L.; Chan,
W.-K.; Lam, Z.-H.; Yeung, L.-L.; Li, P.; Koen, M.;
Mitchell, C. R.; Vonwiller, S. C. Eur. J. Org. Chem. 2000,
3205–3216; (c) Haynes, R. K.; Lam, W. W.-L.; Yeung,
L.-L. Tetrahedron Lett. 1996, 37, 4729–4732.
Figure 1. X-ray structure of 5. HÕs omitted for clarity. Selected bond
lengths: P1–N1 1.662(2), P1–C1 1.817(2), P1–C7 1.862(3), P1–B1
1.932(3). Selected bond angles: N1–P1–C1 108.59(10), N1–P1–C7
108.74(13), C1–P1–C7 105.35(11), N1–P1–B1 110.78(15), C1–P1–B1
111.58(13), C7–P1–B1 111.60(14).
4. (a) Cobley, C. J.; van den Heuvel, M.; Abbadi, A.; de
Vries, J. G. Tetrahedron Lett. 2000, 41, 2467–2470; (b)
Ghaffar, T.; Parkins, A. W. J. Mol. Catal. A: Chem. 2000,
160, 249–261; (c) Jiang, X.-B.; Minnaard, A. J.; Feringa,
B. L.; de Vries, J. G. J. Org. Chem. 2004, 69, 2327–2331;
(d) Herzon, S. B.; Myers, A. G. J. Am. Chem. 2005, 127,
5342–5344.
O
1) t-BuLi, THF, -78 oC
2) PTSA/H2O
Me
Me
Ph
P
H
t-Bu
N
Ph
P
O
6
Ph
(R)-(+)-1
40%, ee = 85%
5. (a) Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513–1516;
(b) Wolf, C.; Lerebours, R. Org. Lett. 2004, 6, 1147–1150;
For a recent application of diamino- and dioxophosphine
oxides, see: (c) Ackermann, L.; Born, R. Angew. Chem.,
Int. Ed. 2005, 44, 2444–2447.
Scheme 4. Ring opening of the unprotected ephedrine
oxazaphospholidine by tert-butyllithium.
6 based
give aminophosphine borane. Nevertheless, no reaction
was observed with the latter under acidolysis conditions.
We thus decided to extend our conditions to the unpro-
tected (1R,2S)-(À)-ephedrine derivative 6. Preliminary
results indicate that the ring opening and acidolysis oc-
curred with poorer global yield (40%) but the stereose-
lectivity of the reaction remains the same as with the
prolinol based phosphine (Scheme 4).
6. Bigeault, J.; Giordano, L.; Buono, G. Angew. Chem., Int.
Ed. 2005, 44, 4753–4757.
7. Dubrovina, N. V.; Bo¨rner, A. Angew. Chem., Int. Ed.
2004, 43, 5883–5886.
8. Jiang, X.; Minnaard, A. J.; Hessen, B.; Feringa, B. L.;
Duchateau, A. L. L.; Andrien, J. G. O.; Boogers, J. A. F.;
de Vries, J. G. Org. Lett. 2003, 5, 1503–1506.
9. Jiang, X.; van den Berg, M.; Minnaard, A. J.; Feringa, B.
L.; de Vries, J. G. Tetrahedron: Asymmetry 2004, 15,
2223–2229.
The enantiomeric excesses observed are similar when
using p-toluenesulfonic acid (+)-(R)-1, (85% ee) but
much lower when using formic acid (À)-(S)-1 (25% ee).
10. (a) Dai, W.-M.; Yeung, K. K. Y.; Leung, W. H.; Haynes,
R. K. Tetrahedron: Asymmetry 2003, 14, 2821–2826; (b)
Nemoto, T.; Matsumoto, T.; Matsuda, T.; Hitomi, T.;
Hatano, K.; Hamada, Y. J. Am. Chem. 2004, 126, 3690–
3691; (c) Nemoto, T.; Matsuda, T.; Matsumoto, T.;
Hamada, Y. J. Org. Chem. 2005, 70, 7172–7178.
11. (a) Chatt, J.; Heaton, B. T. J. Chem. Soc. A 1968, 2745–
2757; (b) Chan, E. Y. Y.; Zhang, Q. F.; Sau, Y.-K.; Lo, S.
M. F.; Sung, H. H. Y.; Williams, I. D.; Haynes, R. K.;
Leung, W.-H. Inorg. Chem. 2004, 43, 4921–4926.
12. (a) Kolodiazhnyi, O. I.; Grishkun, E. V. Tetrahedron:
Asymmetry 1996, 7, 967–970; (b) Kolodiazhnyi, O. I.;
Gryshkun, E. V.; Andrushko, N. V.; Freytag, M.; Jones,
P. O.; Schmutzler, R. Tetrahedron: Asymmetry 2003, 14,
181–183.
In conclusion, we have developed a convenient, enantio-
selective synthesis of tert-butylphenylphosphine oxide.
Most of all, this method allows the stereochemistry con-
trol of the final product. Efforts are underway to eluci-
date the mechanism details of the hydrolysis reaction,
particularly the influence of the strength of the acid
and to define the scope and limitations of this reaction.
Acknowledgements
13. (a) Cros, P.; Buono, G.; Peiffer, G.; Denis, D.; Mortreux,
A.; Petit, F. New J. Chem. 1987, 11, 573–579; (b) Richter,
W. J. Chem. Ber. 1984, 117, 2328–2336.
We thank Dr. Michel Giorgi, for his kind assistance
with X-ray analysis of compound 5. We are grateful to