Page 5 of 7
Journal of the American Chemical Society
With these optimised conditions, the effectiveness of Pd@p-
pling products. Our work suggests that appropriately treated
GO and its composites can be a powerful synthetic tool in
tandem reactions.
1
2
3
4
5
6
7
GO for the tandem catalytic system is assessed (Table 2). The
electronic effects of the substituents on the phenyl ring have
little effect on the efficiency of the coupling process under
mild reaction conditions (Table 2, entries 3-7). Catalytic cross
coupling of benzylamine with aniline can be successfully
achieved by Pd@p-GO with 70% yield of the corresponding
product and excellent selectivity (Table 2, entry 8).
ASSOCIATED CONTENT
Supporting Information. Experimental procedures, analytical
data and NMR spectrua. This material is available free of charge
To date, no studies have reported applying one catalytic ma-
terial for catalytic oxidation and hydrogenation without com-
promising the catalytic reactivity of either. It is interesting to
see whether such “incompatible” reactions can be first
achieved by using graphene bifunctional catalyst. Because it is
not safe to perform the reaction under a mixture gas of hydro-
gen and oxygen (air) at high temperature, this reaction is car-
ried out under low temperature and it successfully furnishes
the desired product in 56% yield (scheme 5).34
8
9
AUTHOR INFORMATION
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Corresponding Author
ACKNOWLEDGMENT
We acknowledge the support of the Singapore Economic Devel-
opment Board (SPORE, COY-15-EWI-RCFSA/N197-1).
Scheme 5. Simultaneous activation of molecular oxygen
and hydrogen.
REFERENCES
(1) Su, D. S.; Perathoner, S.; Centi, G. Chem. Rev. 2013, 113,
5782.
(2) Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. J. Mater. Chem.
2010, 20, 2277.
(3) Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Nat. Chem.
2010, 2, 1015.
(4) Dreyer, D. R.; Todd, A. D.; Bielawski, C. W. Chem. Soc. Rev.
2014, 43, 5288.
(5) Dreyer, D. R.; Bielawski, C. W. Chem. Sci. 2011, 2, 1233.
(6) Su, C. L.; Loh, K. P. Acc. Chem. Res. 2013, 46, 2275.
(7) Kong, X. K.; Chen, C. L.; Chen, Q. W. Chem. Soc. Rev. 2014,
43, 2841.
(8) Navalon, S.; Hakshinamoorthy, A. D.; Alvaro, M.; Garcia, H.
Chem. Rev. 2014, 114, 6179.
(9) Su, C. L.; Acik, M.; Takai, K.; Lu, J.; Hao, S. J.; Zheng, Y.;
Wu, P. P.; Bao, Q. L.; Enoki, T.; Chabal, Y. J.; Loh, K. P. Nat.
Commun. 2012, 3, 1298.
(10) Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Angew. Chem., Int.
Ed. 2010, 49, 6813.
(11) Nunez-Magro, A. A.; Eastham, G. R.; Cole-Hamilton, D. J.;
Chem. Commun. 2007, 3154.
(12) He, L.; Lou, X. B.; Ni, J.; Liu, Y. M.; Cao, Y.; He, H.; Fan,
K. N. Chem.-Eur. J. 2010, 16, 13965.
(13) Lawrence, S. A. Amines: Synthesis Properties and Applica-
tions. Cambridge University, Cam-bridge 2004.
(14) Hollmann, D.; Bahn, S.; Tillack, A.; Beller, M. Angew. Chem.,
Int. Ed. 2007, 46, 8291.
(15) Guillena, G.; Ramꢁn, D. J.; Yus, M. Chem. Rev. 2010, 110,
1611.
(16) Hamid, M. H.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.;
Maytum, H. C.; Watson, A. J.; Williams, J. M. J. Am. Chem. Soc.
2009, 131, 1766.
(17) Grirrane, A.; Corma, A.; Garcia, H. J. Catal. 2009, 264, 138.
(18) Ishida, T.; Kawakita, N.; Akita, T.; Haruta, M.; Gold Bull.
2009, 42, 267.
(19) Largeron, M.; Fleury, M. B. Science 2013, 339, 43.
(20) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111,
1780.
A plausible mechanism for the tandem catalysis by Pd@p-
GO is as follows: first, primary amine undergoes an oxidative
coupling reaction on the active defect sites9 to produce imine
intermediates and H2O2. The imine intermediates react with
the nucleophiles to furnish the corresponding α-position func-
tionalised secondary amines. In the presence of the Pd nano-
catalyst, molecular hydrogen is activated and imine intermedi-
ates are then transferred to secondary amine products via tan-
dem hydrogenation, as shown in Figure 4.
Figure 4. Proposed mechanism for the Pd@p-GO bifunctional
catalytic system.
Conclusion
In conclusion, we have identified several classes of multi-step
reactions involving amines that can be catalysed by p-GO with
high yields. p-GO has been successfully applied as a carbocat-
alyst in the tandem reaction of primary amines to produce
polycyclic N-containing heterocyclic compounds via multi-
step oxidative coupling and intramolecular additions. When p-
GO is hybridised with a co-catalyst such as Pd nanoparticles,
the composite works well as a synergistic catalytic system for
the sequential oxidation of amine and the hydrogenation of
imine intermediates to furnish secondary amines as the cou-
(21) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011, 40, 2761.
(22) Pan, Y. H.; Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y. Y.;
Loh, K. P.; Tan, C. H. Green. Chem. 2011, 13, 3341.
(23) Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R.
Org. Lett. 2013, 15, 1092.
(24) Das, D.; Seidel, D. Org. Lett. 2013, 15, 4358.
(25) Trꢀger, J. J. Prakt. Chem. 1887, 36, 225.
(26) Frank, K. E.; Aube, J. J. Org. Chem. 2000, 65, 655.
(27) Mao, D.; Tang, J.; Wang, W.; Wu, S.; Liu, X.; Yu, J.; Wang,
L. J. Org. Chem. 2013, 78, 12848.
ACS Paragon Plus Environment