4
Tetrahedron Letters
3. Conclusion
excellent functional group compatibility, this radical procedure
should find practical application in the synthesis of nitrogen-
containing molecules, especially in the pharmaceutical industry.
Detailed studies aimed at elucidating the mechanism of this
process are currently underway in our laboratory.
In conclusion, a facile PhI(OCOCF3)2-mediated methodology
has been developed for the formation of nitrogen-centered
radicals from various N–H-containing compounds. This reaction
allowed for the facile preparation of a wide variety of 2-
aminoheterarenes via a radical-type amination process. Taking
into account its many desirable features, including mild
conditions, operational simplicity, broad substrate scope, and
Angew. Chem., Int. Ed. 2013, 52, 2082-2086; (f) Antonchick A. P.;
Burgmann L. Angew. Chem., Int. Ed. 2013, 52, 3267-3271; (g)
Muñiz K. Topics in Current Chemistry, 2015, 373, 105-133; (h)
Stridfeldt E.; Seemann A.; Boumal M. J.; Dey C.; Ertan A.;
Olofsson B. Chem–Eur. J. 2016, 22, 16066-16070.
Acknowledgments
We are grateful to the National Natural Science Foundation of
China (U1504210); Jilin Province Key Laboratory of Organic
Functional Molecular Design
aynu201710 and AYNU-KP-B06 for financial support of this
research.
8. (a) Kim H.; Kim T.; Lee D. G.; Roh S. W.; Lee C. Chem.
Commun. 2014, 50, 9273-9276; (b) Foo K.; Sella E.; Thomé I.;
Eastgate M. D.; Baran P. S. J. Am. Chem. Soc. 2014, 136, 5279-
5282; (c) Qin Q. X.; Yu S. Y. Org. Lett. 2014, 16, 3504-3507; (d)
Greulich T. W.; Daniliuc C. G.; Studer A. Org. Lett. 2015, 17,
254-257.
9. (a) Xiong T.; Zhang Q. Chem. Soc. Rev. 2016, 45, 3069-3087; (b)
Zhang H. W.; Pu W. Y.; Xiong T.; Li Y.; Zhou X.; Sun K.; Liu
Q.; Zhang Q. Angew. Chem., Int. Ed. 2013, 52, 2529-2533; (c)
Zhang H. W.; Song Y. C.; Zhao J. B.; Zhang J. P.; Zhang Q.
Angew. Chem., Int. Ed. 2014, 53, 11079-11083; (d) Zheng G. F.;
Li Y.; Han J. J.; Xiong T.; Zhang Q. Nat Commun. 2015, 6, 7011-
7019.
&
Synthesis (130028651);
References and notes
1. For selected reviews, see: (a) Davies H. M. L.; Manning J. R.
Nature, 2008, 451, 417-424; (b) Cho S. H.; Kim J. Y.; Kwak J. Y.;
Chang S. Chem. Soc. Rev. 2011, 40, 5068-5083; (c) Hartwig J. F.
Acc. Chem. Res. 2012, 45, 864-873; (d) Louillat M. L.; Patureau
F. W. Chem. Soc. Rev. 2014, 43, 901-910.
2. (a) Alsfassi Z. B. N-Centered Radicals, Wiley: New York, 1998;
(b) Stubbe J.; van Der Donk W. A. Chem. Rev. 1998, 98, 705-762;
(c) Xiong T.; Zhang Q. Chem. Soc. Rev. 2016, 45, 3069-3087.
3. (a) Khusnutdinov R. I.; Bayguzina A. R.; Dzhemilev U. M. J.
Organomet. Chem. 2014, 768, 75-114; (b) Prajapati S. M.; Patel
K. D.; Vekariya R. H.; Panchal S. N.; Patel H. D. RSC Adv. 2014,
4, 24463-24476; (c) Bharate J. B.; Vishwakarma R. A.; Bharate S.
B. RSC Adv. 2015, 5, 42020-42053.
4. (a) Li G.; Jia C. Q.; Sun K. Org. Lett. 2013, 15, 5198-5201; b)
Zhu C. W.; Yi M. L.; Wei D. F.; Chen X.; Wu Y. J.; Cui X. L.
Org. Lett. 2014, 16, 1840-1843; (c) Yu H.; Dannenberg C. A.; Li
Z.; Bolm C. Chem–Asian J. 2016, 11, 54-57.
5. For selected papers, see: (a) Li P.; Zhao J. J.; Xia C. G.; Li F. W.
Org. Chem. Front. 2015, 2, 1313-1317; (b) Luo K.; Chen Y. Z.;
Chen L. X.; Wu L. J. Org. Chem. 2016, 81, 4682-4689; (c) Xiang
C. B.; Bian Y. J.; Mao X. R.; Huang Z. Z. J. Org. Chem. 2012, 77,
7706-7710.
6. Fecent reviews on chemistry of hypervalent iodine(III): (a)
Zhdankin V. V.; Stang P. J. Chem. Rev. 2008, 108, 5299-5358;
(b) Merritt E. A.; Olofsson B. Angew. Chem., Int. Ed. 2009, 48,
9052-9070; (c) Yusubov M. S.; Maskaev A. V.; Zhdankin V. V.
ARKIVOC, 2011, 1, 370-409; (d) Zhdankin V. V., Hypervalent
Iodine Chemistry: Preparation, Structure, and Synthetic
Applications of Polyvalent Iodine Compounds. Wiley: Weinheim,
2013, 21-143; (e) Yoshimura A.; Zhdankin V. V. Chem. Rev.
2016, 116, 3328-3435; (f) Wirth T. Hypervalent Iodine Chemistry.
Topics in Current Chemistry, 2016.
10. (a) Sun K.; Li Y.; Xiong T.; Zhang J.; Zhang Q. J. Am. Chem. Soc.
2011, 133, 1694-1697; (b) Sun K.; Wang X.; Li G.; Zhu Z.; Jiang
Y.; Xiao B. Chem. Commun. 2014, 50, 12880-12883; (c) Sun K.;
Wang X.; Liu L.; Sun J.; Liu X.; Li Z.; Zhang G. ACS. Catal.
2015, 5, 7194-7198; (d) Sun K.; Wang X.; Lv Y. H.; Li G.; Jiao H.
Z.; Dai C. W.; Li Y. Y.; Zhang C.; Liu L. Chem. Commun. 2016,
52, 8471-8474.
11. For some recent studies, see: (a) Dixit P. P.; Nair P. S.; Patil V. J.;
Jain S.; Arora S. K.; Sinha N. Bioorg. Med. Chem. Lett. 2005, 15,
3002-3005; (b) Mishra N.; Arora P.; Kumar B.; Mishra L. C.;
Bhattacharya A.; Awasthi S. K.; Bhasin V. K. Eur. J. Med. Chem.
2008, 43, 1530-1535; (c) Rezaei Z.; Khabnadideh S.; Pakshir K.;
Hossaini Z.; Amiri F.; Assadpour E. Eur. J. Med. Chem. 2009, 44,
3064-3067.
12. Hu X. Z.; Wang J. X.; Feng Y. Q. J. Agric. Food. Chem. 2010, 58,
112-119.
13. Morimoto K.; Ohnishi Y.; Nakamura A.; Sakamoto K.; Dohi T.;
Yasuyuki Kita, Asian J. Org. Chem., 2014, 3, 382-386.
14. A. Yoshimura, S. R. Koski, J. M. Fuchs, A. Saito, V. N. Nemykin
and V. V. Zhdankin, Chem. Eur. J., 2015, 21, 5328-5331.
Supplementary Material
The Supporting Information is available free of charge on the
website at DOI: xxxxxxxxxxxxxxx.
7. (a) Kim H. J.; Kim J.; Cho S. H.; Chang S. J. Am. Chem. Soc.
2011, 133, 16382-16385; (b) Kantak A. A.; Potavathri S.; Barham
R. A.; Romano K. M.; DeBoef B. J. Am. Chem. Soc. 2011, 133,
19960-19965; (c) Antonchick A. P.; Samanta R.; Kulikov K.;
Lategahn J. Angew. Chem., Int. Ed. 2011, 50, 8605-8608; (d)
Samanta R.; Bauer J. O.; Strohmann C.; Antonchick A. P. Org.
Lett. 2012, 14, 5518-5521; (e) Matcha K.; Antonchick A. P.
Click here to remove instruction text...