Journal of the American Chemical Society
Page 12 of 14
Racemic Alanine Derivatives: Unexpected Chiral Twist and Enhanced
Capacity for the Discrimination of Chiral Species. Angew. Chem. Int. Ed.
013, 52, 4122-4126.
17) a) El-Hachemi, Z.; Arteaga, O.; Canillas, A.; Crusats, J.; Escudero, C.;
Kuroda, R.; Harada, T.; Rosa, M.; Ribó, J. M.: On the mechano-chiral effect
of vortical flows on the dichroic spectra of 5-phenyl-10,15,20-tris(4-
sulfonatophenyl)porphyrin J-aggregates. Chem. Eur. J. 2008, 14, 6438-
L.; Troufflard, C.; Tessier, M.; Vanthuyne, N.; Ide, J.; Maistriaux, T.;
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Beljonne, D.; Brocorens, P.; Lazzaroni, R.; Raynal, M.; Bouteiller, L.: Tuning
the nature and stability of self-assemblies formed by ester benzene 1,3,5-
tricarboxamides: the crucial role played by the substituents. Soft Matter
2016, 12, 7824-7838; d) Caumes, X.; Baldi, A.; Gontard, G.; Brocorens, P.;
Lazzaroni, R.; Vanthuyne, N.; Troufflard, C.; Raynal, M.; Bouteiller, L.:
Tuning the structure of 1,3,5-benzene tricarboxamide self-assemblies
through stereochemistry. Chem. Commun. 2016, 52, 13369-13372; e)
Bejagam, K. K.; Remsing, R. C.; Klein, M. L.; Balasubramanian, S.:
Understanding the self-assembly of amino ester-based benzene-1,3,5-
tricarboxamides using molecular dynamics simulations. Phys. Chem. Chem.
Phys. 2017, 19, 258-266; f) Vantomme, G.; ter Huurne, G. M.; Kulkarni, C.;
ten Eikelder, H. M. M.; Markvoort, A. J.; Palmans, A. R. A.; Meijer, E. W.:
Tuning the Length of Cooperative Supramolecular Polymers under
Thermodynamic Control. J. Am. Chem. Soc. 2019, 141, 18278-18285.
(24) a) Desmarchelier, A.; Caumes, X.; Raynal, M.; Vidal-Ferran, A.; van
Leeuwen, P. W. N. M.; Bouteiller, L.: Correlation between the Selectivity
and the Structure of an Asymmetric Catalyst Built on a Chirally Amplified
Supramolecular Helical Scaffold. J. Am. Chem. Soc. 2016, 138, 4908-4916;
b) Zimbron, J. M.; Caumes, X.; Li, Y.; Thomas, C. M.; Raynal, M.; Bouteiller,
L.: Real-Time Control of the Enantioselectivity of a Supramolecular Catalyst
Allows Selecting the Configuration of Consecutively Formed Stereogenic
Centers. Angew. Chem. Int. Ed. 2017, 56, 14016-14019.
2
(
6
443; b) Crusats, J.; El-Hachemi, Z.; Ribó, J. M.: Hydrodynamic effects on
chiral induction. Chem. Soc. Rev. 2010, 39, 569-577; c) Micali, N.;
Engelkamp, H.; van Rhee, P. G.; Christianen, P. C. M.; Scolaro, L. M.; Maan,
J. C.: Selection of supramolecular chirality by application of rotational and
magnetic forces. Nat. Chem. 2012, 4, 201-207; d) Kim, J.; Lee, J.; Kim, W.
Y.; Kim, H.; Lee, S.; Lee, H. C.; Lee, Y. S.; Seo, M.; Kim, S. Y.: Induction and
control of supramolecular chirality by light in self-assembled helical
nanostructures. Nat Commun 2015, 6; e) Sun, J. S.; Li, Y. K.; Yan, F. S.; Liu,
C.; Sang, Y. T.; Tian, F.; Feng, Q.; Duan, P. F.; Zhang, L.; Shi, X. H.; Ding, B.
Q.; Liu, M. H.: Control over the emerging chirality in supramolecular gels
and solutions by chiral microvortices in milliseconds. Nat Commun 2018,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
9
, 2599, doi:10.1038/s41467-018-05017-7; f) Sang, Y. T.; Yang, D.; Duan, P.
F.; Liu, M. H.: Towards homochiral supramolecular entities from achiral
molecules by vortex mixing-accompanied self-assembly. Chem. Sci. 2019,
1
0, 2718-2724; g) Hu, J. G.; Xie, Y. F.; Zhang, H. L.; He, C. L.; Zhang, Q. J.;
Zou, G.: Chiral induction, modulation and locking in porphyrin based
supramolecular assemblies with circularly polarized light. Chem. Commun.
(25) van Gestel, J.: Amplification of Chirality of the Majority-Rules Type in
Helical Supramolecular Polymers: The Impact of the Presence of Achiral
Monomers. J. Phys. Chem. B 2006, 110, 4365-4370.
(26) CD spectroscopy analyses are performed with [l1-BTA] ≤5.8 mM to
limit the absorbance of the sample in toluene whilst catalytic experiments
are performed with [l1-BTA]= 16.1 mM
2
019, 55, 4953-4956.
(18) a) Stals, P. J. M.; Korevaar, P. A.; Gillissen, M. A. J.; de Greef, T. F. A.;
Fitie, C. F. C.; Sijbesma, R. P.; Palmans, A. R. A.; Meijer, E. W.: Symmetry
Breaking in the Self-Assembly of Partially Fluorinated Benzene-1,3,5-
tricarboxamides. Angew. Chem. Int. Ed. 2012, 51, 11297-11301; b) Shen, Z.
C.; Wang, T. Y.; Liu, M. H.: Macroscopic Chirality of Supramolecular Gels
(27) Allenmark, S.: Induced Circular Dichroism by Chiral Molecular
Interaction. Chirality 2003, 15, 409-422.
Formed
from
Achiral
Tris(ethyl
cinnamate)
Benzene-1,3,5-
tricarboxamides. Angew. Chem. Int. Ed. 2014, 53, 13424-13428; c) Shen, Z.
C.; Jiang, Y. Q.; Wang, T. Y.; Liu, M. H.: Symmetry Breaking in the
Supramolecular Gels of an Achiral Gelator Exclusively Driven by pi-pi
Stacking. J. Am. Chem. Soc. 2015, 137, 16109-16115; d) Sang, Y. T.; Liu, M.
H.: Symmetry Breaking in Self-Assembled Nanoassemblies. Symmetry
(28) Naphthalenediimides (NDI) derived from quaternary amino acids
were found to be adequate soldiers in S&S-type NDI co-assemblies:
Anderson, T. W.; Sanders, J. K. M.; Dan Pantoş, G.: The sergeants-and-
soldiers effect: chiral amplification in naphthalenediimide nanotubes. Org.
Biomol. Chem. 2010, 8, 4274-4280.
(29) Lightfoot, M. P.; Mair, F. S.; Pritchard, R. G.; Warren, J. E.: New
supramolecular packing motifs: pi-stacked rods encased in triply-helical
hydrogen bonded amide strands. Chem. Commun. 1999, 1945-1946.
(30) The deviation of the scattering intensity at low q values is either the
result of the finite length of the objects or of interactions between objects.
Accordingly, only a lower limit value of the length of the supramolecular
helices can be deduced (l> 120 nm).
(31) a) van Gestel, J.; van der Schoot, P.; Michels, M. A. J.: Amplification of
chirality in helical supramolecular polymers. Macromolecules 2003, 36,
6668-6673; b) van Gestel, J.: Amplification of chirality in helical
supramolecular polymers: The majority-rules principle. Macromolecules
2004, 37, 3894-3898; c) van Gestel, J.; van der Schoot, P.; Michels, M. A.
J.: Amplification of chirality in helical supramolecular polymers beyond the
long-chain limit. J Chem Phys 2004, 120, 8253-8261.
(32) Li, Y.; Dubreucq, L.; Alvarenga, B. G.; Raynal, M.; Bouteiller, L.: N-
Substituted Benzene-1-Urea-3,5-Biscarboxamide (BUBA): Easily Accessible
C-2-Symmetric Monomers for the Construction of Reversible and Chirally
Amplified Helical Assemblies. Chem. Eur. J. 2019, 25, 10650-10661.
(33) a) van Gestel, J.; Palmans, A. R. A.; Titulaer, B.; Vekemans, J. A. J. M.;
Meijer, E. W.: "Majority-rules" operative in chiral columnar stacks of C-3-
symmetrical molecules. J. Am. Chem. Soc. 2005, 127, 5490-5494; b)
Stals, P. J. M.; Everts, J. C.; de Bruijn, R.; Filot, I. A. W.; Smulders, M. M. J.;
Martin-Rapun, R.; Pidko, E. A.; de Greef, T. F. A.; Palmans, A. R. A.; Meijer,
E. W.: Dynamic Supramolecular Polymers Based on Benzene-1,3,5-
tricarboxamides: The Influence of Amide Connectivity on Aggregate
Stability and Amplification of Chirality. Chem. Eur. J. 2010, 16, 810-821; c)
Helmich, F.; Smulders, M. M. J.; Lee, C. C.; Schenning, A. P. H. J.; Meijer, E.
W.: Effect of Stereogenic Centers on the Self-Sorting, Depolymerization,
and Atropisomerization Kinetics of Porphyrin-Based Aggregates. J. Am.
Chem. Soc. 2011, 133, 12238-12246; d) Greciano, E. E.; Calbo, J.; Buendía,
J.; Cerdá, J.; Aragó, J.; Ortí, E.; Sánchez, L.: Decoding the Consequences of
Increasing the Size of Self-Assembling Tricarboxamides on Chiral
Amplification. J. Am. Chem. Soc. 2019, 141, 7463-7472.
2
019, 11, 950; doi:10.3390/sym11080950.
(19) Cantekin, S.; de Greef, T. F. A.; Palmans, A. R. A.: Benzene-1,3,5-
tricarboxamide: a versatile ordering moiety for supramolecular chemistry.
Chem. Soc. Rev. 2012, 41, 6125-6137.
(20) Smulders, M. M. J.; Stals, P. J. M.; Mes, T.; Paffen, T. F. E.; Schenning,
A. P. H. J.; Palmans, A. R. A.; Meijer, E. W.: Probing the Limits of the
Majority-Rules Principle in a Dynamic Supramolecular Polymer. J. Am.
Chem. Soc. 2010, 132, 620-626.
(21) a) Brunsveld, L.; Schenning, A. P. H. J.; Broeren, M. A. C.; Janssen, H.
M.; Vekemans, J. A. J. M.; Meijer, E. W.: Chiral amplification in columns of
self-assembled
N,N',N''-tris((S)-3,7-dimethyloctyl)benzene-1,3,5-
tricarboxamide in dilute solution. Chem. Lett. 2000, 292-293; b) Wilson, A.
J.; Masuda, M.; Sijbesma, R. P.; Meijer, E. W.: Chiral amplification in the
transcription of supramolecular helicity into a polymer backbone. Angew.
Chem. Int. Ed. 2005, 44, 2275-2279;
c) Wilson, A. J.; van Gestel, J.;
Sijbesma, R. P.; Meijer, E. W.: Amplification of chirality in benzene
tricarboxamide helical supramolecular polymers. Chem. Commun. 2006,
4
404-4406; d) Smulders, M. M. J.; Schenning, A. P. H. J.; Meijer, E. W.:
Insight into the Mechanisms of Cooperative Self-Assembly: The
Sergeants-and-Soldiers” Principle of Chiral and Achiral C3-Symmetrical
“
Discotic Triamides. J. Am. Chem. Soc. 2008, 130, 606-611; e) Smulders, M.
M. J.; Filot, I. A. W.; Leenders, J. M. A.; van der Schoot, P.; Palmans, A. R.
A.; Schenning, A. P. H. J.; Meijer, E. W.: Tuning the Extent of Chiral
Amplification by Temperature in a Dynamic Supramolecular Polymer. J.
Am. Chem. Soc. 2010, 132, 611-619.
(22) Li, Y.; Caumes, X.; Raynal, M.; Bouteiller, L.: Modulation of catalyst
enantioselectivity through reversible assembly of supramolecular helices.
Chem. Commun. 2019, 55, 2162-2165.
(23) a) de Loos, M.; van Esch, J. H.; Kellogg, R. M.; Feringa, B. L.: C-3-
symmetric, amino acid based organogelators and thickeners: a systematic
study of structure-property relations. Tetrahedron 2007, 63, 7285-7301;
b) Veld, M. A. J.; Haveman, D.; Palmans, A. R. A.; Meijer, E. W.: Sterically
demanding benzene-1,3,5-tricarboxamides: tuning the mechanisms of
supramolecular polymerization and chiral amplification. Soft Matter 2011,
7, 524-531; c) Desmarchelier, A.; Alvarenga, B. G.; Caumes, X.; Dubreucq,
(34) Jouvelet, B.; Isare, B.; Bouteiller, L.; van der Schoot, P.: Direct Probing
ACS Paragon Plus Environment