Botta et al.
a
known,6 and the first generation of calix[4]arene peptide
dendrimers has recently been synthesized.7 Mostly, the presence
of a N- or C-linked peptide endows the macrocycle with novel
properties, such as the recognition of protein surfaces8 and
carbohydrates,9 the formation of stable inclusion complexes,10
and self-assembly phenomena.11 A four-armed hydrophilic
peptidocalix[4]arene library consisting of 1000 members, suit-
able for peptide recognition in aqueous media, has recently been
developed.12 Only a few papers reported on cavitands equipped
with dipeptide residues. For example, either peptides of helical
conformation have been connected to a cavitand platform, using
a thioether bridge at the external carbon of the aromatic rings,13
or the C-termini of four short peptide chains have been linked
to the aromatic amino methyl groups.14
We have previously functionalized resorc[4]arene octamethyl
ethers at the feet with L- and D-valine ethyl ester units,15 and
later exploited their capability of enantiodiscriminating amino
acidic guests16 in the gas phase by mass spectrometry (MS).
The limited body of work addressed to investigate by MS
techniques the gas-phase stability of host-guest complexes
formed by calixarenes and resorcarenes with organic molecular
guests has been discussed in detail in a recent comprehensive
review.17 In this paper we report on the synthesis and host-
guest properties of N-linked peptidoresorc[4]arene octamethyl
SCHEME 1
a Reagents and conditions: (i) 2 N NaOH, EtOH, reflux, 4 h; glacial
AcOH; (ii) thionyl chloride, THF, reflux, 4 h.
ethers, obtained by conjugation of macrocycle tetracarboxylic
acid chlorides in the cone conformation with the appropriate
terminal amino groups of valyl-leucine and leucyl-valine methyl
esters. Complexation phenomena between peptidoresorc[4]-
arenes and the homologue dipeptides as guests were investigated
in solution by NMR methods and in the gas phase by ESI-MS.
Results and Discussion
Synthesis of the N-Linked Peptidoresorc[4]arenes. We
chose for the synthesis resorc[4]arene octamethyl ether tetraester
1 (Scheme 1) in the cone conformation for the presence of four
all-cis substituents that could preorganize the peptide chain on
the same side of the scaffold. Resorcarene 1, obtained as
previously described,18 was hydrolyzed to tetracarboxylic acid
2 (Scheme 1) and quantitatively converted into the correspond-
ing acid chloride 3 by reaction with thionyl chloride in
tetrahydrofuran (THF).
(6) (a) Sansone, F.; Barboso, S.; Casnati, A.; Fabbi, M.; Pochini, A.;
Ugozzoli, F.; Ungaro, R. Eur. J. Org. Chem. 1998, 897. (b) Sansone, F.;
Barboso, S.; Casnati, A.; Sciotto, D.; Ungaro, R. Tetrahedron Lett. 1999,
40, 6821. (c) Lazzarotto, M.; Sansone, F.; Baldini, L.; Casnati, A.; Cozzini,
P.; Ungaro, R. Eur. J. Org. Chem. 2001, 595. (d) Casnati, A.; Sansone, F.;
Ungaro, R. Acc. Chem. Res. 2003, 36, 246 and references cited therein
from the authors laboratory. (e) Hioki, H.; Yamada, T.; Fujioka, C.; Kodama,
M. Tetrahedron Lett. 1999, 40, 6821. (f) Hioki, H.; Kubo, M.; Yoshida,
H.; Bando, M.; Ohnishi, Y.; Kodama, M. Tetrahedron Lett. 2002, 43, 7949.
(g) Frkanec, L.; Visnjevac, A.; Kojic-Prodic, B.; Zinic, M. Chem. Eur. J.
2000, 6, 442. (h) Shuker, S. B.; Esterbrook, J.; Gonzalez, J. Synlett 2001,
210.
Standard peptide coupling was employed to gather the four
dipeptide chains 6, 9, ent-6, and ent-9. Commercially available
N-BOC-L-valine 4 (Figure 1) was coupled with L-leucine methyl
ester hydrochloride 5 in the presence of HOBT and triethylamine
to afford, after deprotection with TFA-DCM, dipeptide L-valyl-
L-leucine methyl ester 6, as TFA salt, in a 93% overall yield.
Analogously, dipeptide L-leucyl-L-valine methyl ester 9 (TFA
salt, 95% overall yield) was prepared from commercially
available N-BOC-L-leucine 7 and L-valine methyl ester hydro-
chloride 8. The same procedure was applied to the DD-dipeptides
series, to afford the TFA salts of dipeptides ent-6 and ent-9
with comparable yields, as summarized in Figure 1. The
conjugation of acid chloride 3 with the single dipeptides gave
the final compounds. In a general reaction, diisopropylethy-
lamine (DIPEA) was added, under nitrogen, to a dry THF
solution of 3 and the reaction mixture was stirred at room
temperature for 20 min. After the slow addition of the proper
dipeptide (in a 1.5 excess for each acid chloride group), the
mixture was held at reflux for 3 h. Chromatographic purification
afforded the N-linked peptidoresorc[4]arenes 10, 11, ent-10, and
ent-11 in 48-51% yield, starting from dipeptides 6, 9, ent-6,
and ent-9, respectively (Figure 2). The structures of compounds
10, 11, ent-10, and ent-11 were confirmed by 1H and 13C NMR
spectroscopy and by electrospray ionization mass spectrometry
(ESI-MS).
(7) Xu, H.; Kinsel, G. R.; Zhang, J.; Rudkevich, D. M. Tetrahedron 2003,
59, 5837.
(8) (a) Hamuro, Y.; Calama, M. C.; Park, H. S.; Hamilton, A. D. Angew.
Chem. 1997, 109, 2797; Angew. Chem., Int. Ed. 1997, 36, 2680. (b) Park,
H. S.; Lin, Q.; Hamilton, A. D. Biopolymers (Peptide Science) 1998, 47,
285. (c) Park, H. S.; Lin, Q.; Hamilton, A. D. J. Am. Chem. Soc. 1999,
121, 8. (d) Lin, Q.; Hamilton, A. D. Compt. Rend. 2002, 5, 441. (e) Francese,
S.; Cozzolino, A.; Caputo, I.; Esposito, C.; Martino, M.; Gaeta, C.; Troisi,
F.; Neri, P. Tetrahedron Lett. 2005, 46, 1611.
(9) Sansone, F.; Baldini, L.; Casnati, A.; Lazzarotto, M.; Faimani, G.;
Ugozzoli, F.; Ungaro, R. PNAS 2002, 99, 4842.
(10) Sansone, F.; Baldini, L.; Casnati, A.; Chierici, E.; Ugozzoli, F.;
Ungaro, R. J. Am. Chem. Soc. 2004, 126, 6204.
(11) Segura, M.; Bricoli, B.; Casnati, A.; Munoz, E. M.; Sansone, F.;
Ungaro, R.; Vicent, C. J. Org. Chem. 2003, 68, 6296.
(12) Kubo, M.; Nashimoto, E.; Tokiyo, T.; Morisaki, Y.; Kodama, M.;
Hioki, H. Tetrahedron Lett. 2006, 47, 1927.
(13) (a) Gibb, B. C.; Mezo, A. R.; Causton, A. S.; Fraser, J. R.; Tsai, F.
C. S.; Sherman, J. C. Tetrahedron 1995, 51, 8719. (b) Causton, A. S.;
Sherman, J. C. Bioorg. Med. Chem. 1999, 7, 23. (c) Mezo, A. R.; Sherman,
J. C. J. Am. Chem. Soc. 1999, 121, 8983. (d) Causton, A. S.; Sherman, J.
C. J. Peptide Sci. 2002, 8, 275.
(14) Berghaus, C.; Feigel, M. Eur. J. Org. Chem. 2003, 3200.
(15) Botta, B.; Delle Monache, G.; Salvatore, P.; Gasparrini, F.; Villani,
C.; Botta, M.; Corelli, F.; Tafi, A.; Gacs-Baitz, E.; Santini, A.; Carvalho,
C. F.; Misiti, D. J. Org. Chem. 1997, 62, 932.
(16) (a) Botta, B.; Botta, M.; Filippi, A.; Tafi, A.; Delle Monache, G.;
Speranza, M. J. Am. Chem. Soc. 2002, 124, 7658. (b) Tafi, A.; Botta, B.;
Botta, M.; Delle Monache, G.; Filippi, A.; Speranza, M. Chem. Eur. J.
2004, 10, 4126. (c) Botta, B.; Subissati, D.; Tafi, A.; Delle Monache, G.;
Filippi, A.; Speranza, M. Angew. Chem., Int. Ed. 2004, 43, 4767. (d) Botta,
B.; Caporuscio, F.; Subissati, D.; Tafi, A.; Botta, M.; Filippi, A.; Speranza,
M. Angew. Chem., Int. Ed. 2006, 45, 2717. (e) Botta, B.; Caporuscio, F.;
D’Acquarica, I.; Delle Monache, G.; Subissati, D.; Tafi, A.; Botta, M.;
Filippi, A.; Speranza, M. Chem. Eur. J. 2006, 12, 8096.
The 1H and 13C NMR spectral data were consistent with the
distribution pattern of a resorc[4]arene containing four identical
side chains. The inner protons (i.e., H-25, H-26, H-27, and H-28)
gave only one signal, as well as the outer ones (H-5, H-11,
(18) Botta, B.; Di Giovanni, M. C.; Delle Monache, G.; De Rosa, M.
C.; Gacs-Baitz, E.; Botta, M.; Corelli, F.; Tafi, A.; Santini, A.; Benedetti,
E.; Pedone, C.; Misiti, D. J. Org. Chem. 1994, 59, 1532.
(17) Vincenti, M.; Irico, A. Int. J. Mass Spectrom. 2002, 214, 23 and
references cited therein.
9284 J. Org. Chem., Vol. 72, No. 24, 2007