K. Dahms, M. O. Senge / Tetrahedron Letters 49 (2008) 5397–5399
150.09, 154.10 ppm; UV–vis (CH2Cl2): kmax (lg
5399
e
) = 417 nm (5.13), 546 (4.27),
The results indicate that it is not important for the outcome of
the reaction how close the ethynyl group is to the porphyrin moi-
ety. It also shows the potential utility of this approach to prepare
even larger porphyrin arrays using this method by attaching oli-
goporphyrins to the triptycene unit.
581 (3.57); HRMS (ES+) [C44H35BN4O2Zn+H] calcd 727.2223, found 727.2206.
For compound 10: Yield: 207.3 mg (0.308 mmol, 48%); mp 260 °C; Rf = 0.37
(CH2Cl2/n-hexane, 1:1, v/v); 1H NMR (400 MHz, CDCl3,20 °C): d = 1.14 (t, 3 H,
3J = 7.40 Hz, CH2–CH3), 1.84 (s, 14H, CH3 + CH2–CH3), 2.55 (m, 2H, CH2–CH2–
CH2), 2.76 (s, 6H, C6H4–CH3), 5.04 (t, 2H, 3J = 7.91 Hz, CH2–CH2–CH2–CH3), 7.59
(d, 4H, 3J = 7.78 Hz, ArH), 8.10 (d, 4H, 3J = 7.78 Hz, ArH), 8.92 (d, 2H, 3J = 4.77 Hz,
Hb), 8.95 (d, 2H, 3J = 4.77 Hz, Hb), 9.49 (d, 2H, 3J = 4.77 Hz, Hb), 9.82 (d, 2H,
3J = 4.77 Hz, Hb) ppm; 13C NMR (100.6 MHz, CDCl3, 20 °C): d = 14.24, 21.58,
23.71, 25.33, 35.28, 40.94, 85.06, 119.58, 122.50, 127.29, 134.45, 137.24,
In summary, 2,6,14-triiodotriptycene 4 was generated in a
three-step synthesis from commercially available triptycene.
Treatment of the borylated porphyrins 8–10 with 4 under Suzuki
cross-coupling conditions afforded the desired porphyrin trimers
11–13 in unoptimised yields of 16–22%. Likewise, the reaction of
the ethynylporphyrins 14 and 16 under Sonogashira conditions
gave the target compounds 15 and 17 in unoptimised yields of
22%. These synthetic pathways therefore provide a straightforward
approach for the design of rigid porphyrin trimers, and have
opened up access to a new class of porphyrin arrays. We are cur-
rently optimising the reactions, extending them to the coupling
of oligoporphyrins and the use of such units in dendritic porphyrin
arrays.
139.67 ppm; UV–vis (CH2Cl2): kmax (lg
(3.79), 589 (3.77), 644 (3.53); HRMS (ES+) [C44H45BN4O2+H]: calcd 673.3714,
found 673.3685.; potential rational for the initially low yields is the
e) = 417 nm (5.35), 517 (4.22), 549
A
reduction of the bromoporphyrin as noted by Balaban et al.: (b) Balaban, T. S.;
Bhise, A. D.; Fischer, M.; Schaetzel-Linke, M.; Roussel, C.; Vanthuyne, N. Angew.
Chem., Int. Ed. 2003, 42, 2140–2144; (c) Balaban, T. S.; Goddard, R.; Linke-
Schaetzel, M.; Lehn, J. M. J. Am. Chem. Soc. 2003, 125, 4233–4239.
17. (a) All new compounds reported herein showed spectral data consistent with
the assigned structures. Selected data: For compound 11: Yield: 20.6 mg
(0.01 mmol, 22%); mp >310 °C; Rf = 0.47 (CH2Cl2/n-hexane, 1:1, v/v); 1H NMR
(400 MHz, CDCl3, 20 °C): d = 5.96 (s, 1H, CH), 6.10 (s, 1H, CH), 7.71 (m, 30H,
ArH), 8.05 (m, 21H, ArH), 8.18 (s, 1H, ArH), 8.25 (s, 1H, ArH), 8.33 (s, 1H, ArH),
8.78 (m, 16H, Hb), 8.92 (m, 8H, Hb) ppm; 13C NMR (150.9 MHz, CDCl3, 20 °C):
d = 13.99, 22.56, 29.24, 29.58, 31.80, 53.97, 54.01, 118.83, 118.84, 118.87,
118.91, 118.96, 122.43, 126.69, 126.71, 127.56, 129.43, 131.16, 132.02, 132.06,
132.29, 132.36. 132.42, 133.57, 138.02, 140.80 ppm; UV–vis (CH2Cl2): kmax (lg
Acknowledgement
e) = 418 nm (5.54), 528 (5.06); HRMS (MALDI LD+) [C134H80N12Ni3]: calcd
2030.4689, found 2030.4669. For compound 12: Yield: 18.3 mg (0.009 mmol,
18%); mp >310 °C; Rf = 0.09 (CH2Cl2/n-hexane, 2:1, v/v); 1H NMR (400 MHz,
CDCl3, 20 °C): d = 6.16 (s, 1H, CH), 6.31 (s, 1H, CH), 7.81 (m, 30H, ArH), 8.30 (m,
21H, ArH), 8.51 (s, 1H, ArH), 8.59 (s, 1H, ArH), 8.69 (s, 1H, ArH), 9.03 (m, 18H, Hb),
9.22 (m, 6H, Hb) ppm; 13C NMR (150.9 MHz, CDCl3, 20 °C): d = 14.01, 22.59,
29.26, 29.56, 29.60, 31.83, 36.26, 121.01, 121.07, 121.12, 122.27, 126.47,
127.40, 130.53, 131.89, 131.92, 132.00, 132.29, 134.35, 134.38, 140.04, 142.79,
This work was generously supported by a Science Foundation
Ireland Research Professorship Award (SFI 04/RP1/B482).
References and notes
144.09, 144.92 ppm; UV–vis (CH2Cl2): kmax (lg e) = 424 nm (5.49), 549 (4.92),
1. Winnischofer, H.; Toma, H. E.; Araki, K. J. Nanosci. Nanotechnol. 2006, 6, 1701–
1709.
587 (4.32). For compound 13: Yield: 8.9 mg (0.005 mmol, 16%); mp 237 °C;
Rf = 0.13 (CH2Cl2/n-hexane, 1:1, v/v); 1H NMR (600 MHz, CDCl3, 20 °C):
d = À2.64 (s, 2H, NH), À2.61 (s, 2H, NH), À2.57 (s, 2H, NH), 1.16 (t, 9H,
3J = 7.31 Hz, CH3), 1.85 (m, 6H, CH2–CH3), 2.57 (m, 6H, CH2–CH2–CH2), 2.77 (m,
18H, C6H5–CH3), 5.06 (m, 6H, CH2–CH2–CH2–CH3), 6.13 (s, 1H, CH), 6.26 (s, 1H,
CH), 7.61 (m, 12H, ArH), 8.14 (m, 18H, ArH), 8.48 (s, 1H, ArH), 8.53 (s, 1H, ArH),
2. Linke-Schaetzel, M.; Anson, C. E.; Powell, A. K.; Buth, G.; Palomares, E.; Durrant,
J. D.; Balaban, T. S.; Lehn, J.-M. Chem. Eur. J. 2006, 12, 1931–1940.
3. Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Chem. Rev. 2001, 101.
4. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornwaite-Lawless, A. M.; Papiz,
M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature 1995, 374, 517–521.
5. Wasielewski, M. R.; Niemczyk, M. P. J. Am. Chem. Soc. 1984, 106, 5043–5045.
6. Wiehe, A.; Senge, M. O.; Kurreck, H. Liebigs Ann. Recl. 1997, 1951–1963.
7. Korth, O.; Wiehe, A.; Kurreck, H.; Röder, B. Chem. Phys. 1999, 246, 363–372.
8. Wiehe, A.; Senge, M. O.; Schäfer, A.; Speck, M.; Tannert, S.; Kurreck, H.; Röder, B.
Tetrahedron 2001, 57, 10089–10110.
9. (a) Osuka, A.; Liu, B.-L.; Maruyama, K. J. Org. Chem. 1993, 58, 3582–3585; (b)
Arnold, D. P.; Nitschinsk, L. J. Tetrahedron Lett. 1993, 34, 693–696.
10. Zhang, C.; Chen, C.-F. J. Org. Chem. 2006, 71, 6626–6629.
11. Hyslop, A. G.; Kellett, M. A.; Iovine, P. M.; Therien, M. J. J. Am. Chem. Soc. 1998,
120, 12676–12677.
8.60 (s, 1H, ArH), 8.91 (m, 5H, Hb), 8.99 (m, 13H, Hb), 9.51 (m, 6H, Hb) ppm; 13
C
NMR (150.9 MHz, CDCl3, 20 °C): d = 13.97, 14.06, 21.41, 22.54, 23.51, 29.21,
29.56, 31.79, 35.11, 40.75, 54.17, 119.25, 119.46, 119.53, 120.29, 122.34,
127.19, 128.69, 130.47, 130.75, 132.04, 134.33, 137.05, 137.08, 137.15, 139.30,
139.43, 144.11, 144.87 ppm; UV–vis (CH2Cl2): kmax (lg e) = 422 nm (5.40), 446
(5.01), 518 (4.44), 554 (4.25), 593 (4.04), 649 (4.05); HRMS (ES+)
[C134H110N12+2H]: calcd 1888.9133, found 1888.9158.
18. Shultz, D. A.; Gwaltney, K. P.; Lee, H. J. Org. Chem. 1998, 63, 4034–4038.
19. Tong, L. H.; Pascu, S. I.; Jarrosson, T.; Sanders, J. K. M. Chem. Commun. 2006,
1085–1087.
20. Kuo, M.-C.; Li, L.-A.; Yen, W.-N.; Lo, S.-S.; Lee, C.-W.; Yeh, C.-Y. Dalton Trans.
2007, 1433–1439.
12. Aratani, N.; Osuka, A. Org. Lett. 2001, 3, 4213–4216.
13. Chng, L. L.; Chang, C. J.; Nocera, D. G. Org. Lett. 2003, 5, 2421–2424.
14. (a) Yamane, O.; Sugiura, K.; Miyasaka, H.; Nakamura, K.; Fujimoto, T.;
Nakamura, K.; Kaneda, T.; Sakata, Y.; Yamashita, M. Chem. Lett. 2004, 33, 40–
41; (b) Sergeeva, N. N.; Lopez Pablo, V.; Senge, M. O. J. Organomet. Chem. 2008,
693, 2637–2640.
15. (a) Horn, S. unpublished results, The University of Dublin, Trinity College, 2007.
Prepared via synthesis of 5,10,15-tritolylporphyrin,15b metallation,
bromination, insertion of a –CꢀC–TMS group and deprotection to the alkynyl
derivative; (b) Senge, M. O.; Feng, X. J. Chem. Soc., Perkin Trans. 1 2000, 3615–
3621.
16. (a) All new compounds reported herein showed spectral data consistent with
the assigned structures. Selected data: For compound 8: Yield: 201.5 mg
(0.28 mmol, 51%); mp 230 °C; Rf = 0.53 (CH2Cl2/n-hexane, 1:1, v/v); 1H NMR
(400 MHz, CDCl3, 20 °C): d = 1.72 (s, 12H, CH3), 7.71 (m, 9H, ArH), 8.02 (m, 6H,
ArH), 8.70 (d, 2H, 3J = 4.9 Hz, Hb), 8.74 (d, 2H, 3J = 4.9 Hz, Hb), 8.86 (d, 2H,
3J = 5.1 Hz, Hb), 9.79 (d, 2H, 3J = 5.1 Hz, Hb) ppm; 13C NMR (100.6 MHz, CDCl3,
20 °C): d = 24.73, 84.39, 118.25, 126.38, 127.23, 127.29, 131.12, 131.86, 132.61,
133.18, 133.26, 133.54, 140.33, 140.44, 141.25, 141.45, 142.48, 146.44 ppm;
21. Fazekas, M.; Pintea, M.; Senge, M. O.; Zawadzka, M. Tetrahedron Lett. 2008,
2236–2239.
22. All new compounds reported herein showed spectral data consistent with the
assigned structures. Selected data: For compound 15: Yield: 7.2 mg
(0.003 mmol, 22%); mp >310 °C; Rf = 0.45 (CH2Cl2/n-hexane, 1:1, v/v); 1H
NMR (400 MHz, CDCl3, 20 °C): d = 2.96 (s, 18H, CH3), 5.61 (s, 1H, CH), 5.62 (s,
1H, CH), 7.42 (d, 4H, 3J = 7.65 Hz, ArH), 7.53 (d, 15H, 3J = 7.56 Hz, ArH), 7.79 (m,
2H, ArH), 7.86 (d, 6H, 3J = 7.83 Hz, ArH), 7.95 (d, 12H, 3J = 7.56 Hz, ArH), 8.04 (d,
6H, 3J = 7.91 Hz, ArH), 8.80 (m, 6H, Hb), 8.85 (m, 6H, Hb), 8.95 (m, 6H, Hb), 9.16
(m, 6H, Hb), 9.86 (s, 3H, Hmeso) ppm; 13C NMR (150.9 MHz, CDCl3, 20 °C):
d = 21.06, 29.27, 88.35, 90.05, 104.21, 118.01, 118.38, 120.03, 122.33, 123.56,
126.63, 127.18, 128.92, 129.62, 131.27, 131.65, 131.84, 132.23, 133.26, 133.30,
137.01, 137.49, 140.75, 141.59, 142.35, 142.48, 142.54, 144.18, 144.28 ppm;
UV–vis (CH2Cl2): kmax (lg e) = 410 nm (5.14), 522 (4.17), 553 (3.68); HRMS
(MALDI LD+) [C146H92N12Ni3]: calcd 2186.5628, found 2186.5596. For
compound 17: Yield: 4.8 mg (0.002 mmol, 22%); mp >310 °C; Rf = 0.61
(CH2Cl2/n-hexane, 1:1, v/v); 1H NMR (400 MHz, CDCl3, 20 °C): d = 2.65 (s, 9H,
CH3), 2.67 (s, 18H, CH3), 5.82 (s, 1H, CH), 5.87 (s, 1H, CH), 7.51 (m, 20H, ArH),
7.73 (m, 4H, ArH), 7.89 (m, 18H, ArH), 8.14 (s, 1H, ArH), 8.16 (s, 1H, ArH), 8.19 (s,
1H, ArH), 8.70 (m, 12H, Hb), 8.84 (m, 6H, Hb), 9.59 (m, 6H, Hb) ppm; 13C NMR
(150.9 MHz, CDCl3, 20 °C): d = 21.05, 29.27, 89.29, 96.52, 98.41, 119.35, 119.95,
127.21, 130.91, 131.62, 131.84, 132.51, 133.15, 137.05, 137.22, 137.30, 141.95,
UV–vis (CH2Cl2): kmax (lg e) = 413 nm (5.27), 528 (4.21), 569 (3.78); HRMS
(ES+) [C44H35BN4NiO2+H]: calcd 721.2285, found 721.2272. For compound 9:
Yield: 108.7 mg (0.15 mmol, 29%); mp 148 °C; Rf = 0.17 (CH2Cl2/n-hexane, 1:1,
v/v); 1H NMR (400 MHz, CDCl3, 20 °C): d = 1.83 (s, 12H, CH3), 7.72 (m, 9H, ArH),
8.17 (m, 6H, ArH), 8.83 (d, 2H, 3J = 4.7 Hz, Hb) 8.85 (d, 2H, 3J = 4.9 Hz, Hb), 8.99
(d, 2H, 3J = 4.7 Hz, Hb), 9.83 (d, 2H, 3J = 4.7 Hz, Hb) ppm; 13C NMR (100.6 MHz,
CDCl3, 20 °C): d = 25.02 ppm, 84.91, 120.64, 122.30, 126.20, 127.13, 127.19,
131.24, 131.85, 132.56, 132.69, 134.02, 134.17, 142.44, 142.55, 149.02, 149.69,
142.25, 142.79, 144.24, 144.43 ppm; UV–vis (CH2Cl2): kmax (lg e) = 437 nm
(5.68), 545 (4.84), 584 (4.84); HRMS (MALDI LD+) [C149H98N12Ni3]:
calcd2228.6098, found 2228.6174.