10.1002/anie.201803947
Angewandte Chemie International Edition
COMMUNICATION
Φp(RT), it also accelerates kr and knr(RT), which typically results
in a shorter τp(RT) lifetime based on Equation (2). Therefore,
oxygen-containing functional groups with lone pair electrons in
favour of n–π* transition were introduced to enhance the spin–
orbit coupling,[34] realizing heavy-atom-free amorphous RTP
materials with larger ΦP(RT). Compared with other molecules, P3
is ideal in this regard with a quantum yield =15.39 % and a lifetime
=0.537 s because of the promotion of the n-π* transition from
constituting oxygen atoms and the intrinsic cross-linked structure
with more rigidity as well. The existence of heavy atom in similar
polymers just resulted in a shorter lifetime (τ=1.15 ms). [28]
emission without the rigorous condition including deoxygenization
and low temperature. The understanding gained from the
experimental results will allow for the construction of next-
generation amorphous RTP materials that may inspire the
development of organic devices, molecular imaging, water
sensing and data security.
Acknowledgements
We gratefully acknowledge the financial support from NSFC
(21788102, 21722603, 21421004 and 21476075), Programme of
Introducing Talents of Discipline to Universities (B1607), the
Innovation Program of Shanghai Municipal Education
Commission and the Fundamental Research Funds for the
Central Universities (222201717003).
Keywords: room-temperature phosphorescence • heavy-atom-
free • amorphous polymer
[1]
[2]
Z. Pan, Y. Y. Lu, F. Liu, Nat. Mater. 2011, 11, 58-63.
K. Van den Eeckhout, P. F. Smet, D. Poelman, Materials 2010, 3, 2536-
2566.
[3]
[4]
[5]
G. Marriott, R. M. Clegg, D. J. Arndt-Jovin, T. M. Jovin, Biophys J 1991,
60, 1374-1387.
G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009,
8, 747-751.
H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt,
M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A.
Rebane, B. C. Wilson, H. L. Anderson, Nat. Photonics 2008, 2, 420-424.
J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323-5351.
A. Kishimura, T. Yamashita, K. Yamaguchi, T. Aida, Nat. Mater. 2005, 4,
546-549.
Figure 4. Photographs of letters (URTP) before and after drying under sunlight,
254 nm UV light and after the removal of excitation source.
[6]
[7]
[8]
[9]
Y. Yang, K. Z. Wang, D. Yan, ACS Appl. Mater. Interfaces 2016, 8,
15489-15496.
Benefiting from the excellent solubility in water and
distinguishable RTP lifetime, these amorphous materials could be
used to develop niche applications in document security. E.g.
aqueous P3 solution (m/n = 1/50, 20 mg/ml) as the ink and letters
‘URTP’ were prepared manually on a piece of non-fluorescent
paper. Upon drying under far-infrared light for 1 min, all letters are
virtually invisible under sunlight (Figure 4). And the patterned
security features of ‘URTP’ encrypted with ultralong
phosphorescence could be observed by naked eye after the
removal of UV light (Movie S1). After spraying with a small amount
of water, the letters became invisible immediately under both
sunlight and UV light, because of the destruction of hydrogen
bond cross-linked networks in solid and RTP quenching by
collision and oxygen. This process is totally reversible.
J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, B. A.
Korgel, J. Am. Chem. Soc. 2001, 123, 3743-3748.
[10] Y. L. Liu, B. F. Lei, C. S. Shi, Chem. Mater. 2005, 17, 2108-2113.
[11] X. Yang, D. Yan, Chem. Sci. 2016, 7, 4519-4526.
[12] W. Z. Yuan, X. Y. Shen, H. Zhao, J. W. Y. Lam, L. Tang, P. Lu, C. L.
Wang, Y. Liu, Z. M. Wang, Q. Zheng, J. Z. Sun, Y. G. Ma, B. Z. Tang, J
Phys Chem C 2010, 114, 6090-6099.
[13] Y. Gong, L. Zhao, Q. Peng, D. Fan, W. Z. Yuan, Y. Zhang, B. Z. Tang,
Chem. Sci. 2015, 6, 4438-4444.
[14] S. Cai, H. Shi, J. Li, L. Gu, Y. Ni, Z. Cheng, S. Wang, W. W. Xiong, L. Li,
Z. An, W. Huang, Adv. Mater. 2017, 29, 1701244.
[15] J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q.
Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840.
[16] Q. Li, Z. Li, Adv. Sci. 2017, 4, 1600484.
[17] Z. Chai, C. Wang, J. Wang, F. Liu, Y. Xie, Y. Z. Zhang, J. R. Li, Q. Li, Z.
Li, Chem. Sci. 2017, 8, 8336-8344.
In summary, we successfully presented a concise and very
simple chemical approach to construct amorphous pure organic
RTP materials based on heavy-atom-free polymers. The principle,
which involves the inhibition of non-radiative relaxation pathways
through hydrogen bonding cross-linked networks, provides
convenient access to ultralong-lived luminescence observed by
naked eye in a diverse array of pure organic molecules under
[18] Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R.
Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685-690.
[19] O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205-
210.
[20] M. S. Kwon, D. Lee, S. Seo, J. Jung, J. Kim, Angew. Chem., Int. Ed. 2014,
53, 11177-11181.
[21] D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, J. Kim, J. Am.
Chem. Soc. 2013, 135, 6325-6329.
ambient conditions. Notably, P3 powder exhibited
a
[22] S. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T.
Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386-3397.
[23] Y. Katsurada, S. Hirata, K. Totani, T. Watanabe, M. Vacha, Adv. Opt.
Mater. 2015, 3, 1726-1737.
phosphorescence lifetime of 537 ms and an appreciable quantum
yield of 15.39 %. This method possesses the merits of facile
preparation, simplicity, universality and R. T. phosphorescence
This article is protected by copyright. All rights reserved.