Mendeleev Commun., 2018, 28, 152–154
A. S. Kucherenko, N. E. Ustyuzhanina, V. B. Krylov, Yu. E. Tsvetkov,
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
M. L. Gening and N. E. Nifantiev, Mendeleev Commun., 2017, 27, 425.
4 A. V. Nartova, L. M. Kovtunova, Yu. V. Larichev, A. K. Khudorozhkov,
A. N. Bobrovskaya, G. V. Shterk and V. I. Bukhtiyarov, Mendeleev
Commun., 2017, 27, 70.
5 P. V. Markov, G. O. Bragina,A. V. Rassolov, I. S. Mashkovsky, G. N. Baeva
,
O. P. Tkachenko, I. A. Yakushev, M. N. Vargaftik and A. Yu. Stakheev,
Mendeleev Commun., 2016, 26, 494.
6 P.V. Markov, G. O. Bragina,A.V. Rassolov, G. N. Baeva, I. S. Mashkovsky,
V. Yu. Murzin, Ya. V. Zubavichus and A. Yu. Stakheev, Mendeleev
Commun., 2016, 26, 502.
7 Y. Yan, J. S. Du, K. D. Gilroy, D. Yang, Y. Xia and H. Zhang, Adv.
Mater., 2017, 29, 1605997.
8 M. Krajcˇi and J. Hafner, ChemCatChem, 2016, 8, 34.
9 S. Furukawa and T. Komatsu, ACS Catal., 2017, 7, 735.
10 K. Föttinger, Catalysis, 2013, 25, 77.
11 M. Armbrüster, M. Behrens, K. Föttinger, M. Friedrich, É. Gaudry,
S. K. Matam and H. R. Sharma, Cat. Rev. Sci. Eng., 2013, 55, 289.
12 I. S. Mashkovsky, P. V. Markov, G. O. Bragina, G. N. Baeva, A. V.
Bukhtiyarov, I. P. Prosvirin, V. I. Bukhtiyarov and A. Yu. Stakheev,
Kinet. Catal., 2017, 58, 471 (Kinet. Katal., 2017, 58, 499).
13 H. Zhou, X. Yang, L. Li, X. Liu, Y. Huang, X. Pan, A. Wang, J. Li and
T. Zhang, ACS Catal., 2016, 6, 1054.
PdZn, 200 °C
PdZn, 250 °C
PdZn, 300 °C
PdZn, 350 °C
PdZn, 400 °C
Pd
0
10 20 30 40 50 60 70 80
t/min
Figure 4 Effect of reduction temperature on the hydrogen uptake for
Pd/Al2O3 and PdZn/Al2O3 catalysts in the liquid-phase hydrogenation of
diphenylacetylene.
phase due to PdZn alloy formation. The observed change of the
general reaction kinetics on the PdZn/Al2O3 catalyst is of con-
siderable practical interest since it allows one to effectively control
the course of the reaction and to stop the hydrogenation after the
complete alkyne conversion into olefin.
14 N. T. Mai, T. T. Thuy, D. M. Mott and S. Maenosono, CrystEngComm,
2013, 15, 6606.
It is important to note the identity of catalytic performances of
PdZn/Al2O3 samples reduced at 200–400°C. Only a slight decrease
in the overall catalytic activity was observed, which is probably
attributed to the enlargement and agglomeration of bimetallic
nanoparticles under reduction conditions in accordance with
TEM data (Figure 3). The particle size of PdZn IMCs increases
from 17 (for PdZn sample reduced at 150°C) to ~57 nm (after
400°C treatment). An increase in the reduction temperature also
does not lead to appreciable changes in the selectivity of the
process. At a 90% alkyne conversion, selectivity of alkene forma-
tion for Pd/Al2O3 is about 91% while for PdZn/Al2O3 this
parameter is ~92–94% (Table S1). This result clearly indicates
that the PdZn solid-state alloy–PdZn intermetallic compound
transformation does not exert a significant effect on the catalytic
performance.
Thus, a comparison of the catalytic data with XRD, XPS, and
H2 TPD results suggests that the main reason for the change in
the overall kinetics of hydrogenation on PdZn catalysts compared
to monometallic Pd results mostly from the suppression of a PdH
phase due to PdZn substitutional alloy formation, whereas the
PdZn solid-state alloy–PdZn IMCs transformation only slightly
affects catalytic characteristics.
15 H. H. Holzapfel,A.Wolfbeisser, C. Rameshan, C.WeilachandG. Rupprechter,
Top. Catal., 2014, 57, 1218.
16 H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson,
W. Jones, C. Brookes, D. Morgan and G. Lalev, J. Catal., 2016, 343, 133.
17 J. A. Rodriguez, J. Phys. Chem., 1994, 98, 5758.
18 N. Iwasa, S. Masuda, N. Ogawa and N. Takezawa, Appl. Catal., A, 1995,
125, 145.
19 A. Baylet, P. Marécot, D. Duprez, P. Castellazzi, G. Groppi and P. Forzatti,
Phys. Chem. Chem. Phys., 2011, 13, 4607.
20 L. Znaidi, T. Touam, D. Vrel, N. Souded, S. Ben Yahia, O. Brinza,
A. Fischer and A. Boudrioua, Coatings, 2013, 3, 126.
21 M. J. Akhtar, M. Ahamed, S. Kumar, M. A. M. Khan, J. Ahmad and
S. A. Alrokayan, Int. J. Nanomedicine, 2012, 7, 845.
22 H. Bahruji, M. Bowker, W. Jones, J. Hayward, J. Ruiz Esquius, D. J.
Morgan and G. J. Hutchings, Faraday Discuss., 2017, 197, 309.
23 P. S. da Silva, J. M. Maciel, K. Wohnrath, A. Spinelli and J. R. Garcia,
in Modern Surface Engineering Treatments, ed. M. Aliofkhazraei, InTech,
2013, ch. 9, pp. 209–230.
24 A. A. Veligzhanin, Ya. V. Zubavichus, N. Yu. Kozitsyna, V. Yu. Murzin,
E. V. Khramov and A. A. Chernyshov, J. Surf. Invest. X-Ray Synchrotron
Neutron Tech., 2013, 7, 422 (Poverkhnost. Rentgenovskie, Sinkhrotronnye
i Neitronnye Issledovaniya, 2013, 5, 26).
25 W. Stadlmayr, C. Rameshan, C. Weilach, H. Lorenz, M. Hävecker,
R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, D. Zemlyanov,
S. Penner, R. Schlögl, G. Rupprechter, B. Klötzer and N. Memmel,
J. Phys. Chem. C, 2010, 114, 10850.
26 T. Komatsu, K. Inaba, T. Uezono, A. Onda and T.Yashima, Appl. Catal., A,
2003, 251, 315.
27 N. Iwasa, M. Yoshikawa, W. Nomura and M. Arai, Appl. Catal., A, 2005,
292, 215.
28 H. Arnold, F. Döbert and J. Gaube, in Handbook of Heterogeneous
Catalysis, eds. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp, Wiley-
VCH, Weinheim, 2008, pp. 3266–3283.
We are grateful to the Department of Structural Studies of the
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy
of Sciences for the characterization of the catalysts by electron
microscopy.
This study was supported by the Russian Foundation for Basic
Research (project no. 16-29-10788).
29 W. Palczewska, Adv. Catal., 1975, 24, 245.
30 S. A. Nikolaev, L. N. Zanaveskin, V. V. Smirnov, V. A. Averyanov and
K. L. Zanaveskin, Russ. Chem. Rev., 2009, 78, 231 (Usp. Khim., 2009,
78, 248).
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2018.03.014.
31 P. V. Markov, G. O. Bragina, G. N. Baeva, O. P. Tkachenko, I. S.
Mashkovskii, I. A. Yakushev, M. N. Vargaftik and A. Yu. Stakheev,
Kinet. Catal., 2016, 57, 617 (Kinet. Katal., 2016, 57, 621).
32 M.Armbruster, M. Behrens, F. Cinquini, K. Fottinger,Yu. Grin,A. Haghofer,
B. Klotzer, A. Knop-Gericke, H. Lorenz, A. Ota, S. Penner, J. Prinz,
C. Rameshan, Z. Revay, D. Rosenthal, G. Rupprechter, Ph. Sautet,
R. Schlögl, L. Shao, L. Szentmiklósi, D. Teschner, D. Torres, R. Wagner,
R. Widmer and G. Wowsnick, ChemCatChem, 2012, 4, 1048.
33 A. Borodzinski and G. C. Bond, Catal. Rev., 2006, 48, 91.
References
1 D. B. Eremin and V. P. Ananikov, Coord. Chem. Rev., 2017, 346, 2.
2 V. P. Ananikov, K. I. Galkin, M. P. Egorov, A. M. Sakharov, S. G. Zlotin,
E. A. Redina, V. I. Isaeva, L. M. Kustov, M. L. Gening and N. E. Nifantiev,
Mendeleev Commun., 2016, 26, 365.
3 V. P. Ananikov, D. B. Eremin, S. A.Yakukhnov, A. D. Dilman, V. V. Levin,
M. P. Egorov, S. S. Karlov, L. M. Kustov, A. L. Tarasov, A. A. Greish,
A. A. Shesterkina, A. M. Sakharov, Z. N. Nysenko, A. B. Sheremetev,
A. Yu. Stakheev, I. S. Mashkovsky, A. Yu. Sukhorukov, S. L. Ioffe,
A. O. Terent’ev, V. A. Vil’, Yu. V. Tomilov, R. A. Novikov, S. G. Zlotin,
Received: 21st July 2017; Com. 17/5313
– 154 –