1360
M. Lindstro¨m et al. / Tetrahedron: Asymmetry 16 (2005) 1355–1360
6. Tai, A.; Syouno, E.; Tanaka, K.; Fujita, M.; Sugimura, T.;
Higashiura, Y.; Kakizaki, M.; Hara, H.; Naito, T. Bull.
Chem. Soc. Jpn. 2002, 75, 111–121.
7. Karlsson, S.; Hedenstro¨m, E. Acta Chem. Scand. 1999, 53,
620–630, and references cited therein.
8. Ho¨rnfeldt, A.-B. Ark. Kemi 1968, 28, 571–586.
9. Lipshutz, B. H. Synthesis 1987, 325–341.
10. Tsuboi, S.; Sakamoto, J.-i.; Yamashita, H.; Sakai, T.;
Utaka, M. J. Org. Chem. 1998, 63, 1102–1108.
11. Beak, P. Org. Lett. 2002, 4, 2657–2660.
12. Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 6015–
6018.
a glycine/NaOH buffer at pH 9. The reaction was started
by the addition of HLADH (Horse liver alcohol dehy-
drogenase, 3 mg). The pH was periodically checked
and adjusted by the addition of 15% NaOH. After 2–
3 h, the reaction had reached 40–45% conversion and
was then stopped by the addition of an excess of brine
followed by heating to 40 ꢁC. After continuous extrac-
tion of the water phase with diethyl ether, the produced
lactone was obtained in high yield.
Method 2:37 Formation of Ag2CO3–Celite: Celite (6.0 g)
and silver(I)nitrate (6.0 g) in water (40 mL) was stirred
and Na2CO3Æ10H20 (6.0 g) in water (60 mL) added
dropwise over a period of 0.5 h. The reaction vessel
was kept in the dark during this time. The solid was
washed with water to give the Ag2CO3–Celite, which
was then dried in vacuum for 4 h. Diol 4 (9.9 mg,
0.08 mmol) and Ag2CO3–Celite (0.96 g, 1.5 mmol
Ag2CO3) in CHCl3 (3.4 mL) were heated under reflux
for 5 h, after which filtration and evaporation of the sol-
vent gave the trans-lactone in low yield.38
13. Matsuzawa, S.; Horiguchi, I.; Nakamura, E.; Kuwajima,
I. Tetrahedron 1989, 45, 349–362.
´
14. Herradon, B.; Fenude, E.; Bao, R.; Valverde, S. J. Org.
Chem. 1996, 61, 1143–1147.
15. Lundh, M.; Smitt, O.; Hedenstro¨m, E. Tetrahedron:
Asymmetry 1996, 7, 3277–3284.
16. Theil, F.; Weidner, J.; Ballschuh, S.; Kunath, A.; Schick,
H. J. Org. Chem. 1994, 59, 388–393.
17. Ziegler, T.; Bien, F.; Jurisch, C. Tetrahedron: Asymmetry
1998, 9, 765–780.
18. Kazlauskas, R. J.; Bornscheuer, U. T. In Biotransforma-
tions with Lipases; Rehm, H.-J., Reed, G., Eds.; Biotech-
nology: Biotransformations I; VCH, 1998; 8a; pp 38–191,
and references cited therein.
19. Valivety, R. H.; Halling, P. J.; Macrae, A. R. Biochim.
Biophys. Acta 1992, 1118, 218–222.
20. Lundh, M.; Nordin, O.; Hedenstrom, E.; Ho¨gberg, H.-E.
Tetrahedron: Asymmetry 1995, 6, 2237–2244.
21. Orrenius, C.; Norin, T.; Hult, K.; Carrea, G. Tetrahedron:
Asymmetry 1995, 6, 3023–3030.
The enantiomeric excess (ee) of the trans-4,5-dimeth-
ylhydrofuran-2(3H)-one was detected on GC (HP-
Chiral, b-cyclodextrin-containing capillary column,
20% premethylated, 30 m · 0.250 mm, carrier gas He,
pressure 15 psi, oven temp 140ꢁ). Retention time (min)
for the enantiomers of trans-4,5-dimethylhydrofuran-
2(3H)-one: 13.6 (4S,5R); 15.0 (4R,5S).
22. Faber, K. Biotransformations in Organic Chemistry; A
Textbook, 4th ed.; Springer: Berlin, 2000; pp 40–45.
23. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G. G.; Sih, C. J. J.
Am. Chem. Soc. 1982, 104, 7294–7299.
Acknowledgements
24. Bovara, R.; Carrea, G.; Ferrara, L.; Riva, S. Tetrahedron:
Asymmetry 1991, 2, 931–938.
25. Mutou, T.; Kondo, T.; Ojika, M.; Yamada, K. J. Org.
Chem. 1996, 61, 6340–6345.
26. Schulz, T.; Schmid, R. D.; Pleiss, J. J. Mol. Model. 2001,
7, 265–270.
27. Irwin, A. J.; Jones, J. B. J. Am. Chem. Soc. 1977, 99, 556–
561.
28. Ng, G. S. Y.; Yuan, L. C.; Jakovac, I. J.; Jones, J. B.
Tetrahedron 1984, 40, 1235–1243.
29. Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D.
Tetrahedron 1990, 46, 7139–7150.
We gratefully thank Amano Pharmaceutical Co., Ltd
for the gift of different Amano PS lipases and Novo
Nordisk A/S for the gift of Novozyme 435. Further we
would like to thank NUTEK and Vinnova for financial
support. The research group in Crete acknowledge the
financial support from General Secretariat of Research
and Technology (PENED 2002). D. Bougioukou is
also acknowledged for repeating HLADH-catalysed
reactions.
´
30. Asensio, G.; Miranda, M. A.; Sabater, M. J.; Perez-Prieto,
J.; Simon-Fuentes, A.; Mello, R. J. Org. Chem. 2000, 65,
References
´
964–968.
31. Chen, S.-Y.; Joullie, M. M. J. Org. Chem. 1984, 49, 2168–
2174.
32. Tsuboi, S.; Sakamoto, J.-i.; Kawano, T.; Utaka, M.;
Takeda, A. J. Org. Chem. 1991, 56, 7177–7179.
33. Reissig, H.-U.; Angert, H.; Kunz, T.; Janowitz, A.;
Handke, G.; Bruce-Adjei, E. J. Org. Chem. 1993, 58,
6280–6285.
34. Hackmann, C.; Scha¨fer, H. J. Tetrahedron 1993, 49, 4559–
4574.
35. Berrada, S.; Desert, S.; Metzner, P. Tetrahedron 1988, 44,
3575–3586.
36. Nenitzescu, C. D.; Cioranescu, E.; Cantuniari, I. P. Chem.
Ber. 1937, 70, 277–281.
37. Paquette, L. A. In Enzyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons, 1995; Vol. 6, pp 4448–4452.
38. Fetizon, M.; Golfier, M.; Louis, J. M. Tetrahedron 1975,
31, 171–176.
´
1. Smith, D. R. Systematics, Life History, and Distribution
of Sawflies. In Sawfly Life History Adaptations to Woody
Plants; Wagner, M. R., Raffa, K. F., Eds.; Academic: San
Diego, 1993; pp 3–32.
2. Anderbrant, O. Pheromone biology of sawflies. In Sawfly
Life History Adaptations to Woody Plants; Wagner, M. R.,
Raffa, K. F., Eds.; Academic: San Diego, 1993; pp 119–
154.
3. Anderbrant, O. Sawflies and Seed Wasps. In Pheromones
of Non-Lepidoperan Insects Associated with Agricultural
Plants; Hardie, J., Minks, A. K., Eds.; CABI Publishing:
Wallingford, 1999; pp 199–226.
4. Hedenstro¨m, E.; Andersson, F. J. Chem. Ecol. 2002, 28,
1237–1254, and references cited therein.
5. Hedenstro¨m, E.; Edlund, H.; Lund, S.; Abersten, M.;
Persson, D. J. Chem. Soc., Perkin Trans. 1 2002, 1810–
1817, and references cited therein.