Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
SCHEME 1. Intramolecular Hydroamination Test Reaction
Enantioselective Intramolecular Hydroamination
Catalyzed by Lanthanide Ate Complexes
Coordinated by N-Substituted
(R)-1,1′-Binaphthyl-2,2′-diamido Ligands†
reviews have been published.3 Molander and Pack have
furthermore explored this efficient process toward the rapid
synthesis of pharmaceutically active molecules.4
David Riegert,‡ Jacqueline Collin,*,‡ Abdelkrim Meddour,§
Emmanuelle Schulz,*,‡ and Alexander Trifonov|
The first enantioselective intramolecular hydroamination of
alkenes, catalyzed by ansa lanthanocene complexes substituted
by a menthyl or neomenthyl group, has been reported by Marks
et al.5 These catalysts afforded the pyrrolidine depicted in
Scheme 1 with up to 74% ee. This transformation is now
considered as the test hydroamination/cyclization to evaluate
the efficiency of new catalysts.3b
Laboratoire de Catalyse Mole´culaire, ICMMO, UMR CNRS
8182, UniVersite´ Paris-sud, 91405 Orsay, France, Laboratoire
de Chimie Structurale Organique, ICMMO, UMR CNRS 8182,
UniVersite´ Paris-Sud, 91405 Orsay, France, and
G. A. RazuVaeV Institute of Organometallic Chemistry of
Russian Academy of Sciences, Tropinia 49, 603600 Nizhny
NoVgorod GSP-445, Russia
Enantioenriched piperidines (up to 67% ee) were obtained
with similar lanthanide complexes, including an octahydro-
fluorenyl instead of a tetramethylcyclopentadienyl group.6
Livinghouse and co-workers described in 2001 the activity of
lanthanide tris-silylamides, Ln[N(TMS)2]3, for the cyclization
of aminopentenes into racemic pyrrolidines.7 This work opened
the way to the synthesis of nonmetallocene lanthanide complexes
as catalysts for the intramolecular hydroamination of olefins.
Scott et al. thus prepared chiral bisaryloxide lanthanide com-
plexes from salicylaldimine-type ligands that catalyzed the test
reaction at 70 °C with enantiomeric excesses as high as 60%.8
A new chiral zirconium alkyl cation coordinated by a similar
aminobiphenoxide ligand proved to be an enantioselective
catalyst for the hydroamination/cyclization of secondary amines
(up to 82% ee).9 By the reaction of lanthanide amides with C2-
symmetric bisoxazolines, Marks et al. prepared enantioselective
catalysts active at room temperature for the test cyclization (67%
ee).10 Hultzsch et al. synthesized various sterically hindered
lanthanum and yttrium biphenolate and binaphtholate com-
plexes.11 3,3′-Trisalkylsilylbinaphtholate complexes with a
jacollin@icmo.u-psud.fr; emmaschulz@icmo.u-psud.fr
ReceiVed NoVember 9, 2005
Ytterbium and lutetium ionic complexes derived from
enantiopure substituted (R)-binaphthylamine ligands, of the
general formula [Li(THF)n][Ln[(R)-C20H12(NR)2]2], have
been investigated for the hydroamination/cyclization of
several aminopentenes and an aminohexene. Complexes with
isopropyl or cyclohexyl substituents on nitrogen atoms were
found to be efficient catalysts under mild conditions for the
formation of N-containing heterocycles with enantiomeric
excesses up to 78%.
(3) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673-686. (b)
Hultzsch, K. C. AdV. Synth. Catal. 2005, 347, 367-391. (c) Hultzsch, K.
C.; Gribkov, D. V.; Hampel, F. J. Organomet. Chem. 2005, 690, 4441-
4452.
(4) Molander, G. A.; Pack, S. K. J. Org. Chem. 2003, 68, 9214-9220
and references therein.
(5) (a) Gagne´, M. R.; Brard, L.; Conticello, V. P.; Giardello, M. A.;
Stern, C. L.; Marks, T. J. Organometallics 1992, 11, 2003-2005. (b)
Giardello, M. A.; Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.;
Stern, A. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10212-10240. (c)
Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne´, M. R.; Marks, T. J.
J. Am. Chem. Soc. 1994, 116, 10241-10254.
Intramolecular hydroamination of alkenes is an atom eco-
nomic process leading to the formation of nitrogen heterocycles
that are found in numerous biologically active compounds.1
Since the pioneering work of Marks and co-workers on the
activity of lanthanocene for intramolecular hydroaminations,2
the interest for these reactions has increased, and some recent
(6) (a) Douglass, M. R.; Ogasawara, M.; Hong, S.; Metz, M. V.; Marks,
T. J. Organometallics 2002, 21, 283-292. (b) Ryu, J. S.; Marks, T. J.;
McDonald, F. E. J. Org. Chem. 2004, 69, 1038-1052.
(7) (a) Kim, Y. K.; Livinghouse, T.; Bercaw, J. E. Tetrahedron Lett.
2001, 42, 2933-2935. (b) Kim, Y. K.; Livinghouse, T. Angew. Chem., Int.
Ed. 2002, 41, 3645-3647.
(8) (a) O’Shaughnessy, P. N.; Scott, P. Tetrahedron: Asymmetry 2003,
14, 1979-1983. (b) O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.;
Gillepsie, K. M.; Scott, P. Chem. Commun. 2003, 1770-1771. (c)
O’Shaughnessy, P. N.; Gillepsie, K. M.; Knight, P. D.; Munslow, I.; Scott,
P. Dalton Trans. 2004, 2251-2256.
(9) Knight, P. D.; Munslow, I.; O’Shaughnessy, P. N.; Scott, P. Chem.
Commun. 2004, 894-895.
(10) Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J. Am. Chem. Soc.
2003, 125, 14768-14783.
(11) (a) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. Chem.sEur. J.
2003, 9, 4796-4810. (b) Gribkov, D. V.; Hultzsch, K. C. Chem. Commun.
2004, 730-731. (c) Gribkov, D. V.; Hampel, F.; Hultzsch, K. C. Eur. J.
Inorg. Chem. 2004, 4091-4101.
* Corresponding author. Tel.: 33-169154740 (J.C.); 33-169157356 (E.S.).
Fax: 33-169154680 (J.C.); 33-169154680 (E.S.).
† Dedicated to Professor H. B. Kagan on the occasion of his 75th birthday.
‡ Laboratoire de Catalyse Mole´culaire.
§ Laboratoire de Chimie Structurale Organique.
| G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy
of Sciences.
(1) For general reviews on hydroamination reactions, see: (a) Mu¨ller, T.
E.; Beller, M. Chem. ReV. 1998, 98, 675-703. (b) Nobis, M.; Driessen-
Ho¨lscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983-3985. (c) Brunet, J.
J.; Neibecker, D. In Catalytic Heterofunctionalization from Hydroamination
to Hydrozirconation; Togni, A., Gruˆtzmacher, H., Eds.; Wiley-VCH:
Weinheim, Germany, 2001; pp 91-141. (d) Roesky, P. W.; Muller, T. E.
Angew. Chem., Int. Ed. 2003, 42, 2708-2710. (e) Pohlki, F.; Doye, S. Chem.
Soc. ReV. 2003, 32, 104-114. (f) Beller, M.; Tillack, A.; Seayad, J. In
Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C.,
Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, pp 403-414.
(2) Gagne´, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992,
118, 275-294 and references therein.
10.1021/jo052322x CCC: $33.50 © 2006 American Chemical Society
Published on Web 02/24/2006
2514
J. Org. Chem. 2006, 71, 2514-2517