M. M. Uy et al. / Tetrahedron 59 (2003) 731–736
735
colorless
crystal
of
approximate
dimensions
2.4 Hz, H-3b), 1.90 (1H, ddd, J¼12.8, 7.9, 2.4 Hz, H-4a),
1.82 (1H, dddd, J¼14.0, 12.8, 4.9, 4.3 Hz, H-9ax), 1.71 (3H,
br s, H-14), 1.68 (1H, m, H-8eq), 1.58 (1H, ddd, J¼12.8,
8.5, 8.5 Hz, H-4b), 1.51 (1H, m, H-9eq), 1.24 (1H, m, H-7),
1.10 (1H, m, H-8ax), 1.05 (1H, m, H-11), 1.00 (3H, d,
J¼7.6 Hz, H-15), 0.83 (3H, d, J¼6.7 Hz, H-12), 0.72 (3H,
d, J¼6.7 Hz, H-13); EIMS m/z 437 [M]þ.
0.7£0.4£0.2 mm. A total of 3076 independent reflections
were collected of which 1568 were considered to be
observed [I.2.90s(I)]. The structure was solved by direct
methods36 and expanded using Fourier techniques.37 The
non-hydrogen atoms were refined anisotropically by full-
matrix least-squares refinement. Hydrogen atoms were
refined isotropically. The structure was finally refined to
R¼0.056 (Rw¼0.076). Crystallographic data for the struc-
ture in this paper has been deposited with the Cambridge
Crystallographic Data Centre as supplementary publication
number CCDC 185123. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union Road,
Cambridge, CB2 1EZ, UK (fax: þ44-1223-336033; e-mail:
deposit@ccdc.cam.ac.uk).
Acknowledgements
The authors thank Captain A. Goh and the crew of R/V
Toyoshio-Maru of Hiroshima University for the help in the
collection of the sponge sample, Professor Patricia
R. Bergquist, The University of Auckland, New Zealand,
for the identification of the sponge specimen, and Mr
Hitoshi Fujitaka, Hiroshima University, for the NMR
measurements. This study was supported in part by a
Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
3.6. Conversion of 4 into 1
To a solution of 4 (29 mg) in EtOH was added acetic acid
(2 mL) and the mixture was stirred at room temperature for
18 h. After the solvent was removed, the residue was
purified by silica gel column chromatography (eluted with
20% EtOAc–hexane) to give 28 mg of the product. The IR,
1H NMR and MS spectral data and [a]D of the product were
identical to those of 1.
References
1. Angerer, L. M.; Angerer, R. C. Develop. Biol. 2000, 213,
1–12.
3.7. Preparation of the (S)- and (R)-MTPA esters
2. Ohta, S.; Okada, H.; Kobayashi, H.; Oclarit, J. M.; Ikegami, S.
Tetrahedron Lett. 1993, 34, 5935–5938.
To a solution of 1 (27 mg) in EtOH was added 10% HCl
(1.5 mL). The mixture was allowed to react at 608C for 4
d.38 After removal of the solvent, the residue was treated
through a short ODS column (eluted with 40% MeOH–H2O
to 100% MeOH) to give a crude fraction (13 mg) of the
amine derivative 5 {(þ)-FABMS m/z 222 [MþH]þ}. The
fraction was used for the preparation of MTPA esters
without further purification. To a solution of the amine
derivative 5 (6 mg) in pyridine (dried over CaH2) was added
4-dimethylaminopyridine and (2)-MTPACl at room tem-
perature and stirred for 2.5 h. After evaporation of the
solvent, the residue was passed through a silica gel column
(5% EtOAc–hexane) to afford the (S)-MTPA ester (6a).
The (R)-MTPA ester (6b) was prepared in a similar manner
using (þ)-MTPACl.
3. Ohta, S.; Kobayashi, H.; Ikegami, S. Tetrahedron Lett. 1994,
35, 4579–4580.
4. Ohta, S.; Kobayashi, H.; Ikegami, S. Biosci. Biotech. Biochem.
1994, 58, 1752–1753.
5. Ikegami, S.; Kobayashi, H.; Myotoishi, Y.; Ohta, S.; Kato,
K. H. J. Biol. Chem. 1994, 269, 23262–23267.
6. Ohta, S.; Uno, M.; Yoshimura, M.; Hiraga, Y.; Ikegami, S.
Tetrahedron Lett. 1996, 37, 2265–2266.
7. Uno, M.; Ohta, S.; Ohta, E.; Ikegami, S. J. Nat. Prod. 1996, 59,
1146–1148.
8. Ohta, S.; Ohta, E.; Ikegami, S. J. Org. Chem. 1997, 62,
6452–6453.
9. Yanai, M.; Ohta, S.; Ohta, E.; Ikegami, S. Tetrahedron 1998,
54, 15607–15612.
10. Ohta, E.; Ohta, S.; Ikegami, S. Tetrahedron 2001, 57,
4699–4703.
1
3.7.1. (S)-MTPA ester (6a). H NMR (CDCl3) d 7.56 and
7.40 (5H, m, MTPA phenyl protons), 6.98 (1H, br d,
J¼10.5 Hz, NH), 5.48 (1H, br s, H-1), 3.98 (1H, dd, J¼10.5,
3.5 Hz, H-6), 3.38 (3H, s, MTPA CH3O2), 2.39 (1H, ddd,
J¼16.5, 8.5, 7.9 Hz, H-3a), 2.02 (1H, ddd, J¼16.5, 8.5,
2.4 Hz, H-3b), 1.82 (1H, tt, J¼13.0, 4.5 Hz, H-9ax), 1.76
(1H, m, H-8eq), 1.73 (1H, ddd, J¼12.5, 7.9, 2.4 Hz, H-4a),
1.69 (3H, br s, H-14), 1.58 (1H, m, H-10), 1.52 (1H, m,
H-9eq), 1.44 (1H, ddd, J¼12.5, 8.5, 8.5 Hz, H-4b), 1.34
(1H, m, H-11), 1.26 (1H, m, H-7), 1.18 (1H, qd, J¼13.0,
3.5 Hz, H-8ax), 0.92 (3H, d, J¼6.5 Hz, H-12), 0.89 (3H, d,
J¼7.5 Hz, H-15), 0.83 (3H, d, J¼6.5 Hz, H-13); EIMS m/z
437 [M]þ.
11. Uy, M. M.; Ohta, S.; Yanai, M.; Ohta, E.; Hirata, T.; Ikegami,
S. Bioorg. Med. Chem. Lett. 2002, 12, 3037–3039.
12. Okino, T.; Yoshimura, E.; Hirota, H.; Fusetani, N.
Tetrahedron 1996, 52, 9447–9454.
13. Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H.
Tetrahedron Lett. 1991, 32, 2939–2942.
14. Kingston, J. F.; Benson, E.; Gregory, B.; Fallis, A. G. J. Nat.
Prod. 1979, 42, 528–531.
15. Pettit, G. R.; Rideout, J. A.; Hasler, J. A. J. Nat. Prod. 1981,
44, 588–592.
16. Lidgren, G.; Bohlin, L.; Bergam, J. Tetrahedron Lett. 1986,
27, 3283–3284.
17. Chan, W. R.; Tinto, W. F.; Manchand, P. S.; Todaro, L. J.
J. Org. Chem. 1987, 52, 3091–3093.
3.7.2. (R)-MTPA ester (6b). 1H NMR (CDCl3) d 7.38 and
7.52 (5H, m, MTPA phenyl protons), 6.88 (1H, br d,
J¼10.5 Hz, NH), 5.49 (1H, br s, H-1), 3.98 (1H, dd, J¼10.5,
3.1 Hz, H-6), 3.43 (3H, s, MTPA CH3O–), 2.48 (1H, ddd,
J¼16.5, 8.5, 7.9 Hz, H-3a), 2.09 (1H, ddd, J¼16.5, 8.5,
18. Tinto, W. F.; Lough, A. J.; Mclean, S.; Reynolds, W.; Yu, M.;
Chan, W. R. Tetrahedron 1998, 54, 4451–4458.
19. Lindgren, G.; Bohlin, L.; Christophersen, C. J. Nat. Prod.
1988, 51, 1277–1280.