CATALYTIC ACTIVITY OF Li1 + xHf2 – xInx(PO4)3-BASED
681
13. Voropaeva, D.Yu., Moshareva, M.A., Ilin, A.B.,
Novikova, S.A., and Yaroslavtsev, A.B., Phase transi-
tions and proton conductivity in hafnium hydrogen
phosphate with the NASICON structure, Mendeleev
Commun., 2016, vol. 26, pp. 152–153.
14. Moshareva, M.A., Novikova, S.A., and Yaroslavtsev, A.B.,
Synthesis and ionic conductivity of (NH4)1 – xHx-
Hf2(PO4)3 (x = 0–1) NASICON-type materials, Inorg.
Mater., 2016, vol. 52, no. 12, pp. 1283–1290.
Indium doping reduces the 100% ethanol conversion
temperature by 60°C and raises the yield of acetalde-
hyde and C4 hydrocarbons at high temperatures. C4
selectivity reaches 15 and 17% in the case of the
Li1.05Hf1.95In0.05(PO4)3 and Li1.1Hf1.9In0.1(PO4)3 mate-
rials, respectively (420°C, 97 and 92% conversion,
respectively).
15. Stenina, I.A. and Yaroslavtsev, A.B., Low- and inter-
mediate-temperature proton-conducting electrolytes,
Inorg. Mater., 2017, vol. 53, no. 3, pp. 253–262.
16. Chekannikov, A., Kapaev, R., Novikova, S., Tabach-
kova, N., Kulova, T., Skundin, A., and Yaroslavtsev, A.,
Na3V2(PO4)3/C/Ag nanocomposite materials for Na-
ion batteries obtained by the modified Pechini method,
J. Solid State Electrochem., 2017, vol. 21, no. 6,
pp. 1615–1624.
17. Hirose, N. and Kuwano, J., Ion-exchange properties of
NASICON-type phosphates with the frameworks
[Ti2(PO4)3] and [Ti1.7Al0.3(PO4)3], J. Mater. Chem.,
1994, vol. 4, pp. 9–12.
18. Agaskar, P., Grasselli, R., Buttrey, D., and White, B.,
Structural and catalytic aspects of some NASICON-
based mixed metal phosphates, Stud. Surf. Sci. Catal.,
1997, vol. 110, pp. 219–225.
19. Orlova, A.I., Pet’kov, V.L., Gul’yanova, S.T., Ermi-
lova, M.M., Ienealem, S.L., Samuilova, O.K., Chekh-
lova, T.K., and Gryaznov, V.M., The catalytic proper-
ties of new complex zirconium and iron orthophos-
phates, Russ. J. Phys. Chem. A, 1999, vol. 73, no. 11,
pp. 1767–1769.
20. Brik, Y., Kacimi, M., Bozon-Verduraz, F., and Ziyad, M.,
Characterization of active sites on AgHf2(PO4)3 in
butan-2-ol conversion, Microporous Mesoporous
Mater., 2001, vol. 43, pp. 103–112.
21. Il’in, A.B., Novikova, S.A., Sukhanov, M.V., Ermi-
lova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B.,
Catalytic activity of NASICON-type phosphates for
ethanol dehydration and dehydrogenation, Inorg.
Mater., 2012, vol. 48, no. 4, pp. 397–401.
22. Ermilova, M.M., Sukhanov, M.V., Borisov, R.S.,
Orekhova, N.V., Pet’kov, V.I., Novikova, S.A., Il’in, A.B.,
and Yaroslavtsev, A.B., Synthesis of the new framework
phosphates and their catalytic activity in ethanol con-
version into hydrocarbons, Catal. Today, 2012, vol. 193,
pp. 37–41.
ACKNOWLEDGMENTS
This work was supported by the Presidium of the
Russian Academy of Sciences (program no. 37P, proj-
ect no. I.37.3) and was carried out using equipment of
the Joint Research Center of IGIC RAS.
REFERENCES
1. Yaroslavtsev, A.B. and Stenina, I.A., Complex phos-
phates with the NASICON structure (MxA2(PO4)3),
Russ. J. Inorg. Chem., 2006, vol. 51, pp. S97–S116.
2. Pet’kov, V.I., Mixed phosphates of metal cations in the
oxidation states I and IV, Russ. Chem. Rev., 2012,
vol. 81, no. 7, pp. 606–637.
3. Anantharamulu, N., Rao, K.K., Rambabu, G.,
Kumar, B.V., Radha, V., and Vithal, M., A wide-rang-
ing review on Nasicon type materials, J. Mater. Sci.,
2011, vol. 46, no. 9, pp. 2821–2837.
4. Jian, Z., Hu, Y.-S., Ji, X., and Chen, W., NASICON-
structured materials for energy storage, Adv. Mater.,
2017, vol. 29, no. 20, paper 1 601 925.
5. Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A.,
Fast Na+-ion transport in skeleton structures, Mater.
Res. Bull., 1976, vol. 11, pp. 203–220.
6. Noguchi, Y., Kobayashi, E., Plashnitsa, L.S., Okada, Sh.,
and Yamaki, J., Fabrication and performances of all
solid-state symmetric sodium battery based on NASI-
CON-related compounds, Electrochim. Acta, 2013,
vol. 101, pp. 59–65.
7. Naqash, S., Ma, Q., Tietz, F., and Guillon, O.,
Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted
solid state reaction, Solid State Ionics, 2017, vol. 302,
pp. 83–91.
8. Safronov, D.V., Stenina, I.A., Maksimychev, A.V.,
Shestakov, S.L., and Yaroslavtsev, A.B., Phase transi-
tions and ion transport in NASICON materials of com-
position Li1 + xZr2 – xInx(PO4)3 (x = 0–1), Russ. J.
Inorg. Chem., 2009, vol. 54, no. 11, pp. 1697–1703.
23. Pylinina, A.I. and Mikhalenko, I.I., Influence of com-
pensator ions in the anionic part of Na3ZrM(PO4)3
phosphate with M = Zn, Co, Cu on the acidity and cat-
alytic activity in reactions of butanol-2, Russ. J. Phys.
Chem. A, 2013, vol. 87, no. 3, pp. 372–375.
9. Knauth, Ph., Inorganic solid Li ion conductors: an
overview, Solid State Ionics, 2009, vol. 180, pp. 911–
916.
10. Svitan’ko, A.I., Novikova, S.A., Safronov, D.V., and
Yaroslavtsev, A.B., Cation mobility in Li1 + xTi2 – x
-
Crx(PO4)3 NASICON-type phosphates, Inorg. Mater.,
24. Asabina, E.A., Pet’kov, V.I., Glukhova, I.O., Orek-
hova, N.V., Ermilova, M.M., Zhilyaeva, N.A., and
Yaroslavtsev, A.B., Synthesis and catalytic properties of
2011, vol. 47, no. 12, pp. 1391–1395.
11. Kotobuki, M. and Koishi, M., Sol–gel synthesis of
Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, Ceram. Int.,
2015, vol. 41, pp. 8562–8567.
M
0.5(1 + x)FexTi2 – x(PO4)3 (M = Co, Ni, Cu; 0 ≤ x ≤ 2)
for methanol conversion reactions, Inorg. Mater., 2015,
vol. 51, no. 8, pp. 793–793.
12. Moshareva, M.A. and Novikova, S.A., Synthesis and con-
ductivity study of solid electrolytes Li1 + xAlxGe2 – x(PO4)3 25. Danilova, M.N., Pylinina, A.I., Kasatkin, E.M., Brat-
(x = 0–0.65), Russ. J. Inorg. Chem., 2018, vol. 63, no. 3,
pp. 319–323.
chikova, I.G., Mikhalenko, I.I., and Yagodovskii, V.D.,
Reactions of isobutanol over a NASICON-type Ni-
INORGANIC MATERIALS Vol. 54 No. 7 2018