Page 9 of 11
RSC Advances
Please do not adjust margins
Journal Name
ARTICLE
was purified using column chromatography in CH2Cl2:MeOH
solvent system (96:4) to afford the desired product 10c, a white solid
(254 mg, 91%).
DOI: 10.1039/C6RA19039A
Johnson, P. M. Gannett, K. H. Shaughnessy, J. Org. Chem., 2003, 68,
6767; c) P. ꢀapek, M. Hocek, Synlett, 2005, 19, 3005; d) P. ꢀapek, R.
Pohl, M. Hocek, Org. Biomol. Chem., 2006, 4, 2278; e) M. Vrꢁbel, R.
Pohl, B. Klepetꢁꢂovꢁ, I. Votruba, M. Hocek, Org. Biomol. Chem., 2007,
5, 2849; f) M. Vrꢁbel, R. Pohl, I. Votruba, M. Sajadi, S. A. Kovalenko,
N. P. Ernsting, M. Hocek, Org. Biomol. Chem., 2008, 6, 2852; g) V.
Vongsutilers, J. R. Daft, K. H. Shaughnessy, P. M. Gannett, Molecules,
2009, 14, 3339; h) N. Fresneau, M. A. Hiebel, L. A. Agrofoglio, S.
Berteina-Raboin, Molecules, 2012, 17, 14409; i) T. Lussier, G. Herve,
G. Enderlin, C. Len, RSC Adv., 2014, 4, 46218. For more examples of
Palladium-catalyzed Suzuki-Miyaura modification of nucleosides or
nucleotides see: j) N. Amann, E. Pandurski, T. Fiebig, H. A.
Wagenknecht, Chem. Eur. J., 2002, 8, 4877; k) N. Amann, H. A.
Wagenknecht, Synlett, 2002, 5, 687; l) M. F. Jacobsen, E. E.
Ferapontova, K. V. Gothelf, Org. Biomol. Chem., 2009, 7, 905; m) A.
Okamoto, T. Inasaki, I. Saito, Tetrahedron Lett., 2005, 46, 791; n) N.
Fresneau, M. A. Hiebel, L. A. Agrofoglio, S. Berteina-Raboin,
Molecules, 2012, 17, 14409; o) E. Mayer, L. Valis, R. Huber, N.
Amann, H. A. Wagenknecht, Synthesis, 2003, 15, 2335; p) T. Lussier,
G. Herve, G. Enderlin, C. Len, RSC Adv., 2014, 4, 46218; q) V.
Vongsutilers, J. R. Daft, K. H. Shaughnessy, P. M. Gannett, Molecules,
2009, 14, 3339; r) A. A. H. Elmehriki, M. Suchy, K. J. Chicas, F.
Wojciechowski, R. H. E. Hudson, Artificial DNA: PNA & XNA, 2014,
5, e29174; s) A. Matarazzo, A. H. E. Hudson, Tetrahedron, 2015, 71,
1627.
(E)-5-[2-Carbomethoxyvinyl]-2′-deoxyuridine:(10a) [19]
:
1H NMR (400 MHz, DMSO-d6) δ 11.62 (s, 1H), 8.38 (s, 1H), 7.32
(d, J = 15.8 Hz, 1H), 6.81 (d, J = 15.8 Hz, 1H), 6.08 (t, J = 6.4 Hz,
1H), 5.23 (d, J = 4.3 Hz, 1H), 5.14 (t, J = 5.1 Hz, 1H), 4.21 (dt, J =
8.6, 4.2 Hz, 1H), 3.75 (d, J = 3.3 Hz, 1H), 3.70 – 3.47 (m, 5H), 2.19
– 2.06 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 167.6, 162.1,
149.6, 144.4, 138.5, 116.5, 108.5, 88.0, 85.2, 70.1, 61.2, 51.7, 40.4.
(E)-5-[2-Carboxyvinyl]-2′-deoxyuridine (10b) [19]
:
1H NMR (400 MHz, DMSO-d6) δ 12.12 (s, 1H), 11.58 (s, 1H), 8.34
(s, 1H), 7.24 (d, J = 15.8 Hz, 1H), 6.73 (d, J = 15.8 Hz, 1H), 6.09 (t,
J = 6.2 Hz, 1H), 5.19 (d, J = 31.0 Hz, 2H), 4.21 (s, 1H), 3.75 (d, J =
3.0 Hz, 1H), 3.57 (dd, J = 31.9, 11.6 Hz, 2H), 2.20 – 2.02 (m, 2H).
13C NMR (101 MHz, DMSO-d6) δ 168.4, 162.1, 149.6, 143.9,
137.9, 118.1, 108.7, 88.0, 85.1, 70.1, 61.2, 40.4.
(E)-5-[2-bromovinyl]-2′-deoxyuridine (BVDU) (10c) [19]
:
1H NMR (400 MHz DMSO-d6) δ 11.54 (s, 1H), 8.03 (s, 1H), 7.20
(d, J = 13.5 Hz, 1H), 6.81 (d, J = 13.5 Hz, 1H), 6.08 (t, J = 6.4 Hz,
1H), 5.23 (d, J = 4.2 Hz, 1H), 5.06 (t, J = 5.1 Hz, 1H), 4.22 – 4.17
(m, 1H), 3.74 (dd, J = 6.2, 2.9 Hz, 1H), 3.60 – 3.49 (m, 2H), 2.12 –
2.05 (m, 2H). 13C NMR 161.5, 149.4, 139.4, 129.8, 109.5, 106.4,
87.5, 84.4, 69.7, 60.9, 45.6.
16) a) A. R. Kapdi, V. Gayakhe, Y. S. Sanghvi, J. Garcia, P. Lozano, I. da
Silva, J. Perez, J. L. Serrano, RSC Adv., 2014, 4, 17567; b) V. Gayakhe,
A. Ardhapure, A. R. Kapdi, Y. S. Sanghvi, J. L. Serrano, L. Garcia, J.
Perez, J. Garcia, G. Sanchez, C. Fischer, C. Schulzke, J. Org. Chem.,
2016, 81, 2713.
A.R.K. and C.S. acknowledge The Alexander von Humboldt
Foundation for the research cooperation programme and is also
thanked for the equipment grant to A.R.K. We also thank the
University Grants Commission India for a UGC-SAP fellowship for
V.G., UGC-FRP position and funding for A. R. K. and a
UGC−CSIR fellowship for A.A and S.B.
17) For details on column-free protocol see: A. R. Kapdi, A. Ardhapure, Y.
S. Sanghvi, Synthesis, 2015, 47, 1163.
18) Recoverable and Recyclable Catalysts. Ed. M. Benaglia. Wiley, 2009.
19) Only example showing the recyclability in Heck alkenylation of
nucleosides was reported recently A. V. Ardhapure, Y. S. Sanghvi, A.
R. Kapdi, J. Garcia, G. Sanchez, P. Lozano, J. L. Serrano, RSC Adv.,
2015, 5, 24558.
20) For more examples of Palladium-catalyzed Sonogashira alkynylation of
nucleosides see: a) E. Petricci, M. Radi, F. Corelli, M. Botta,
Tetrahedron Lett., 2003, 44, 9181; b) N. K. Garg, C. C. Woodroofe, C.
J. Lacenere, S. R. Quake, B. M. Stoltz, Chem. Commun., 2005, 4551; c)
M. Hocek, M. Fotja, Org. Biomol. Chem., 2008, 6, 2233; d) J. H. Cho,
C. D. Prickett, K. H. Shaughnessy, Eur. J. Org. Chem., 2010, 3678; e)
D. K. Kolmel, L. J. Barandun, E. T. Kool, Org. Biomol. Chem., 2016,
14, 6407.
21) For general copper-free Sonogashira coupling protocols see: a) B.
Liang, M. Dai, J. Chen, Z. Yang, J. Org. Chem., 2005, 70, 391; b) T.
Ljungdahl, T. Bennur, A. Dallas, H. Emtenas, J. Martensson,
Organometallics, 2008, 27, 2490; c) Z. Gu, Z. Li, Z. Liu, Z. Wang, C.
Liu, J. Xiang, Catal. Commun., 2008, 2154; d) A. Komaromi, Z.
Novak, Chem. Commun., 2008, 4968; e) H. Zhong, J. Wang, L. Li, R.
Wang, Dalton Trans., 2014, 43, 2098.
22) L. Yuan, Z. Zhang, X. Xu, X. Zhou, Synth. Commun., 2014, 44, 1007.
23) a) C. McGuigan, C. J. Yarnold, G. Jones, S. Velazquez, H. Barucki, A.
Brancale, G. Andrei, R. Snoeck, E. De Clercq, J. Balzarini, J. Med.
Chem., 1999, 42, 4479; b) E. De Clercq, Nucleosides, Nucleotides and
Nucleic Acids, 2004, 23, 457; c) V. Aucagne, F. Amblard, L. A.
Agrofoglio, Synlett, 2004, 2406; d) C. McGuigan, R. N. Pathirana, R.
Snoeck, G. Andrei, E. De Clercq, J. Balzarini, J. Med. Chem., 2004, 47,
1847. e) M. Migliore, Antiviral Chemistry and Chemotherapy, 2010,
20, 107.
1) Chemistry of Nucleosides and Nucleotides. Vol. 3 Ed. L. B. Townsend.
Springer, 1994.
2) E. De Clercq, Nucleosides, Nucleotides and Nucleic Acids, 2009, 28,
586.
3) a) T. Robak, Clin. Cancer Drugs, 2014, 1, 2; b) L. P. Jordheim, D.
Durantel, F. Zoulim, C. Dumontet, Nat. Rev. Drug Discovery, 2013, 12,
447.
4) a)R. W. Sinkeldam, N. J. Greco, Y. Tor, Chem. Rev., 2010, 110, 2579;
b) A. A. Tanpure, M. G. Pawar, S. G. Srivatsan, Isr. J. Chem., 2013, 53,
366; c) A. Matarazzo, R. H. E. Hudson, Tetrahedron, 2015, 71, 1627.
5) a) Antiviral Nucleosides. Ed. C. Chu. Elsevier Science, 2003; b) Y. S.
Lee, S. M. Park, B. H. Kim, Bioorg. Med. Chem. Lett., 2009, 19, 1126.
6) V. L. Damaraju, S. Damaraju, J. D. Young, S. A. Baldwin, J. Mackey,
M. B. Sawyer, C. E. Cass, Oncogene, 2003, 22, 7524.
7) a) Metal-Catalyzed Cross-Coupling Reactions. Vol. 2 (Eds. A. de
Meijere, F. Diederich) Wiley−VCH, 2004; b) Cross-Coupling and
Heck-Type Reactions, Workbench Edition; Vol. 1−3. (Eds. G.
Molander, C. Wolfe, M. Larhed) Science of Synthesis. Thieme
Chemistry, 2013.
8) a) S. De Ornellas, T. J. Williams, C. G. Baumann, I. J. S. Fairlamb, In
C-H and C-X Bond Functionalization: Transition Metal Mediation.
(Ed. X. Ribas) RSC Catalysis Series No. 11, RSC, Dorchester, 2013; b)
K. H. Shaughnessy, Molecules, 2015, 20, 9419.
9) A. Suzuki, Angew. Chem. Int. Ed., 2011, 50, 6722.
10) a) Palladium Reagents in Organic Syntheses. Ed. R. F. Heck.
Academic: New York, 1985; b) Palladium Reagents and Catalysts. Ed.
J. Tsuji. Wiley: Chichester, 1995.
11) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett., 1975, 16,
4467.
24) Sonogashira/cyclization strategy has been used for general substrates:
a) G. W. Kabalka, L. Wang, R. M. Pagni, Tetrahedron, 2001, 57, 8017;
b) S. Debnath, S. Mondal, J. Org. Chem., 2015, 80, 3940; c) K.
Shekarrao, P. P. Kaishap, S. Gogoi, R. C. Boruah, Adv. Synth. Catal.,
2015, 357, 1187. Sonogashira/cyclization strategy for obtaining FV-100
12) R. A. Sheldon, Green Chem., 2005, 7, 267.
13) Green Techniques for Organic Synthesis and Medicinal Chemistry.
(Eds. W. Zhang, B. W. Cue) Wiley, 2012.
14) a) H. C. Hailes, Org. Process Res. Dev., 2007, 11, 114; b) A. Chanda,
V. V. Fokin, Chem. Rev., 2009, 109, 725.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins