10.1002/anie.202010861
Angewandte Chemie International Edition
COMMUNICATION
[8]
Y. Long, X. Wang, D. T. Youmans, T. R. Cech, Sci. Adv. 2017, 3,
eaao2110.
P. Han, C.-P. Chang, RNA Biol. 2015, 12, 1094–1098.
S. Geisler, J. Coller, Nat. Rev. Mol. Cell Biol. 2013, 14, 699.
A. Serganov, E. Nudler, Cell 2013, 152, 17–24.
G. Mayer, M.-S. L. Raddatz, J. D. Grunwald, M. Famulok, Angew. Chemie
Int. Ed. 2007, 46, 557–560.
S. Li, R. R. Breaker, Nucleic Acids Res. 2013, 41, 3022–3031.
A. J. Matlin, F. Clark, C. W. J. Smith, Nat. Rev. Mol. Cell Biol. 2005, 6,
386–398.
M. Selmer, C. M. Dunham, F. V Murphy, A. Weixlbaumer, S. Petry, A. C.
Kelley, J. R. Weir, V. Ramakrishnan, Science (80-. ). 2006, 313, 1935–
1942.
N. J. Watkins, M. T. Bohnsack, Wiley Interdiscip. Rev. RNA 2012, 3, 397–
414.
complex as well as three other possible self-dimeric complexes.
Potential crosslinking of self-dimeric complexes was ruled out by
treating individual HPs with BINARI 3 (Fig. S9). This experiment
illustrates the need for efficient crosslinking to capture a transient
complex, and underlines the potential for employing BINARI
crosslinkers to probe RNA-RNA transient and weak interactions
more widely. The reversibility of the method allows for further
downstream analysis.
[9]
[10]
[11]
[12]
[13]
[14]
BINARI crosslinking and reversal efficiency was
[15]
[16]
compared to psoralen with two additional partially self-
complementary RNA sequences. The effects of different
overhanging bases neighboring a duplex (RNA 1-A) and different
internal sequences (RNA S3) were examined. BINARI displayed
high crosslinking yield for all three sequences, and the crosslinks
were reversed successfully with THPP with relatively small
sequence bias (Fig. S10). On the other hand, psoralen displayed
lower crosslinking yields across all sequences and even failed to
crosslink RNA 1-A, confirming psoralen‘s bias for uridines (Fig.
S11). Whereas BINARI uncrosslinking showed little RNA
degradation, reversal of psoralen crosslinks with 254 nm UV
resulted in poor recovery of the original RNA bands, likely due to
UV induced degradation.[51–53] One key advantage of psoralen is
its compatibility with biological environments (e.g.such as cell
lysate or intact cells.[35,36] To test whether BINARI is also
functional in such complex mixtures, RNA crosslinking was
conducted in HeLa whole cell lysate (Fig. S12). BINARI 3
[17]
[18]
S. Djuranovic, A. Nahvi, R. Green, Science (80-. ). 2012, 336, 237–240.
N. Dubois, R. Marquet, J.-C. Paillart, S. Bernacchi, Front. Microbiol.
2018, 9, 527.
[19]
S. Y. Yang, P. Lejault, S. Chevrier, R. Boidot, A. G. Robertson, J. M. Y.
Wong, D. Monchaud, Nat. Commun. 2018, 9, 4730.
J. Gong, Y. Ju, D. Shao, Q. C. Zhang, Quant. Biol. 2018, 6, 239–252.
Z. Lu, H. Y. Chang, Curr. Opin. Struct. Biol. 2016, 36, 142–148.
I. S. Hong, M. M. Greenberg, J. Am. Chem. Soc. 2005, 127, 3692–3693.
U. K. Shigdel, J. Zhang, C. He, Angew. Chemie Int. Ed. 2008, 47, 90–93.
J. Liu, L. Cai, W. Sun, R. Cheng, N. Wang, L. Jin, S. Rozovsky, I. B.
Seiple, L. Wang, Angew. Chemie - Int. Ed. 2019, n/a, DOI
10.1002/anie.201910135.
[20]
[21]
[22]
[23]
[24]
[25]
M. Shelbourne, T. Brown, A. H. El-Sagheer, T. Brown, Chem. Commun.
2012, 48, 11184–11186.
[26]
[27]
[28]
H. Huang, P. B. Hopkins, J. Am. Chem. Soc. 1993, 115, 9402–9408.
H. Do, A. Dobrovic, Clin. Chem. 2015, 61, 64–71.
S. Karmakar, E. M. Harcourt, D. S. Hewings, F. Scherer, A. F. Lovejoy, D.
M. Kurtz, T. Ehrenschwender, L. J. Barandun, C. Roost, A. A. Alizadeh, E.
T. Kool, Nat. Chem. 2015, 7, 752.
R. Wagner, R. A. Garrett, Nucleic Acids Res. 1978, 5, 4065–4076.
K. Chen, Z. Lu, X. Wang, Y. Fu, G.-Z. Luo, N. Liu, D. Han, D.
Dominissini, Q. Dai, T. Pan, C. He, Angew. Chemie Int. Ed. 2015, 54,
1587–1590.
efficiently cross-linked both
a fluorescently labeled self-
complementary RNA (Cy5-RNA 1) and separate complementary
RNAs (RNA S1 and S2) without loss of efficiency when compared
to buffer. Taken together, BINARI displays superior perfomance
with minimal sequence bias for crosslinking and high reversal
recovery as compared with psoralen.
[29]
[30]
[31]
[32]
J. L. Sloane, M. M. Greenberg, J. Org. Chem. 2014, 79, 9792–9798.
K. Fujimoto, A. Yamada, Y. Yoshimura, T. Tsukaguchi, T. Sakamoto, J.
Am. Chem. Soc. 2013, 135, 16161–16167.
In summary, the BINARI probe design constitutes a new
reversible crosslinking strategy for RNA. The presented approach
offers superior crosslinking yields compared to existing methods
with minimal sequence bias, and is selective for RNA-RNA
interactions with no detectable crosslinking of duplex DNA. It is
also compatible with complex biological media such as cell
lysates. We have shown that BINARI-crosslinked RNA is
temporarily protected from nuclease degradation and that
crosslink reversal liberates the native RNA, suggesting future
applications in storage and preservation of RNA. Furthermore,
BINARI was applied successfully to capture transient RNA
complexes of E.coli DsrA-rpos derived hairpins, and the efficient
crosslink reversal reaction enabled the identification of individual
RNA components of the complex. We anticipate that the future
combination of this reversible crosslinking approach with high-
throughput sequencing technologies could aid in mapping the
RNA interactome.
[33]
[34]
J. P. Calvet, T. Pederson, Proc. Natl. Acad. Sci. 1979, 76, 755–759.
T. Stafforst, D. Hilvert, Angew. Chem. Int. Ed. Engl. 2010, 49, 9998–
10001.
Z. Lu, Q. C. Zhang, B. Lee, R. A. Flynn, M. A. Smith, J. T. Robinson, C.
Davidovich, A. R. Gooding, K. J. Goodrich, J. S. Mattick, J. P. Mesirov, T.
R. Cech, H. Y. Chang, Cell 2016, 165, 1267–1279.
E. Sharma, T. Sterne-Weiler, D. O’Hanlon, B. J. Blencowe, Mol. Cell
2016, 62, 618–626.
[35]
[36]
[37]
W. P. Zhen, O. Buchardt, H. Nielsen, P. E. Nielsen, Biochemistry 1986, 25,
6598–6603.
[38]
[39]
J. M. Stadler, T. Stafforst, Org. Biomol. Chem. 2014, 12, 5260–5266.
L. Good, S. K. Awasthi, R. Dryselius, O. Larsson, P. E. Nielsen, Nat.
Biotechnol. 2001, 19, 360–364.
R. C. Spitale, R. A. Flynn, Q. C. Zhang, P. Crisalli, B. Lee, J.-W. Jung, H.
Y. Kuchelmeister, P. J. Batista, E. A. Torre, E. T. Kool, H. Y. Chang,
Nature 2015, 519, 486–90.
A. Kadina, A. M. Kietrys, E. T. Kool, Angew. Chemie - Int. Ed. 2018, 57,
3059–3063.
R. Kirsch, V. J. Olzog, S. Bonin, C. E. Weinberg, H. Betat, P. F. Stadler,
M. Mörl, Biotechniques 2019, 67, 178–183.
[40]
[41]
[42]
[43]
[44]
F. Gasparro, Psoralen Dna Photobiology, Boca Raton: CRC Press, 1988.
V. Genna, M. Marcia, M. De Vivo, J. Am. Chem. Soc. 2019, 141, 10770–
10776.
J. Šponer, G. Bussi, M. Krepl, P. Banáš, S. Bottaro, R. A. Cunha, A. Gil-
Ley, G. Pinamonti, S. Poblete, P. Jurečka, N. G. Walter, M. Otyepka,
Chem. Rev. 2018, 118, 4177–4338.
Acknowledgements
[45]
[46]
We are grateful for support from the U.S. National Institutes of
Health (R01GM127295 and R43ES028559).
R. T. Batey, R. P. Rambo, J. A. Doudna, Angew. Chemie Int. Ed. 1999, 38,
2326–2343.
[47]
[48]
Y. Eguchi, J. Tomizawa, Cell 1990, 60, 199–209.
J. C. Paillart, E. Skripkin, B. Ehresmann, C. Ehresmann, R. Marquet, Proc.
Natl. Acad. Sci. 1996, 93, 5572–5577.
N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, S. Gottesman, Proc.
Natl. Acad. Sci. 1998, 95, 12462–12467.
N. Salim, R. Lamichhane, R. Zhao, T. Banerjee, J. Philip, D. Rueda, A. L.
Feig, Biophys. J. 2012, 102, 1097–1107.
A. Ariza-Mateos, S. Prieto-Vega, R. Díaz-Toledano, A. Birk, H. Szeto, I.
Mena, A. Berzal-Herranz, J. Gómez, Nucleic Acids Res. 2012, 40, 1748–
1766.
Keywords: Acylation • Crosslinking • RNA-RNA interactions •
RNA complexes • Nucleic acids
[49]
[50]
[51]
[1]
[2]
[3]
[4]
T. R. Cech, J. A. Steitz, Cell 2014, 157, 77–94.
C. He, Nat Chem Biol 2010, 6, 863–865.
R.-W. Yao, Y. Wang, L.-L. Chen, Nat. Cell Biol. 2019, 21, 542–551.
F. Li, J. Dong, X. Hu, W. Gong, J. Li, J. Shen, H. Tian, J. Wang, Angew.
Chemie - Int. Ed. 2015, 54, 4597–4602.
[52]
[53]
Z. Jericević, I. Kućan, R. W. Chambers, Biochemistry 1982, 21, 6563–
6567.
E. J. Wurtmann, S. L. Wolin, Crit. Rev. Biochem. Mol. Biol. 2009, 44, 34–
[5]
[6]
[7]
W. A. Velema, E. T. Kool, Nat. Rev. Chem. 2020, 4, 22–37.
L. S. Waters, G. Storz, Cell 2009, 136, 615–628.
E. Anastasiadou, L. S. Jacob, F. J. Slack, Nat. Rev. Cancer 2017, 18, 5.
This article is protected by copyright. All rights reserved.