Alkali Metal Cation π-Interactions in Acetylenes
J. Am. Chem. Soc., Vol. 119, No. 5, 1997 1073
CtC-Li)12(THF)4],7 [(Ph-CtC-Li)tmpda]2 (4),8 and [(Ph-
CtC-Li)4(tmhda)4/2] (5)9 (Table 1). In contrast, the short Be-
Câ distances indicate π-interactions in [(Me-CtC)2BeNMe3]2
(6) (Table 1).10
Li-Cs decrease with increasing size of the alkali metal cations
(Table 2).15 Negative charge delocalization from CR to Câ is
indicated both by the increased metal cation/acetylide interac-
tions upon increased M-CtC-R layer penetration (see Scheme
1)4 and by the lower ν-CtC frequencies.15 However, an
increase in ion size also gives rise to lower ν-CtC frequencies
(see below).15 How can the effect of π-coordination be
differentiated?
Alkali metal π-bonding to benzene ligands has been inves-
tigated extensively owing to its important role in biological ion
channels.16 As “lithium-bonded”17 cyclopropanes emphasize
the analogy to hydrogen-bonded cyclopropanes,17d,18 π-“lithium-
bonded” acetylenes stress the analogy to π-hydrogen-bonded
acetylenes.18a,19 The Li+20 and LiH21 π-association energies of
acetylene are appreciable and are even larger when the
acetylenes are metalated.22 Notwithstanding, Li+ π-bonding has
not been observed experimentally in X-ray crystal structures
of homogeneous lithium acetylides or in compounds with
nonmetalated acetylene groups.2
For an assessment of electrostatic metal acetylene π-interac-
tions,23 we now report the X-ray crystal structures of lithiated
(Li-CtC-SiMe2-C6H4-OMe) and of nonlithiated (Li-O-
CMe2-CtC-H) acetylene moieties. Both exhibit π-bonded
Li ions. High level computations reveal the structural, the
energetic, and the ω-CtC vibrational consequences of alkali
cation π-interactions in related metal acetylene models and
assess the electronic effects of π-coordination.
3, R = t-Bu; L = THF
4, M = Li; R = Ph; L = tmpda
1
–
5, R = Ph; L = tmhda
–
)
6, M = Be; R = Me; L = (C C-Me)(NMe
3
/
–
2
Moreover, the alkali cations in the heterometallic magnesiates
Li2[(Ph-CtC)3Mg(tmeda)]2 (7),11 Na2[(t-Bu-CtC)3Mg(tmeda)]2
(8),12 and Na2[(t-Bu-CtC)3Mg(pmdta)]2 (9)12 connect the
acetylene moieties of the [Mg(CtC-R)3]- fragments through
π-contacts (Table 1). Analogous structures as in 7 to 9 result
from replacement of M+ by EtMg+ in (Et)(Ph-CtC)3(Mg)2
(tmeda)]2(C6H6) (10).13 Similarly, the lithiums in [Me3SiC
(CtC-t-Bu)2Li]2 (11)2g as well as the magnesium ion in
[(C5HMe4)2Ti(CtC-SiMe3)2][Mg(THF)Cl] (12)14 are located
between the arms of “tweezers” formed by the acetylene groups
(Table 1).
Results and Discussion
Syntheses and X-Ray Crystal Structures of Homo-Lithium
Acetylenes Featuring Electrostatic π-Interactions. Why is
π-coordination not apparent in the structures of the oligomeric
lithium acetylides 3, 4, and 5? This may be due to (a)
insufficient energy gain upon π-bridging (see below), (b) the
lower tendency of the smaller alkali metals to undergo multi-
hapto coordination,2b,c,f and (c) the competition between the
substituents on the acetylene moieties and the lithium coordinat-
ing solvent (Scheme 2a).
M1 )
M2 )
Li
Na
Na
R )
L )
7
8
9
Mg
Mg
Mg
Mg
Ph
tmeda
tmeda
pmdta
tmeda
(15) Nast, R.; Gremm, J. Z. Anorg. Allgem. Chem. 1963, 325, 62.
(16) (a) Mecozzi, S.; West, A. P., Jr.; Dougherty, D. A. J. Am. Chem.
Soc. 1996, 118, 2307. (b) Dougherty, D. A. Science 1996, 271, 163. (c)
Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 4177. (d)
Kumpf, R. A.; Dougherty, D. A. Science 1993, 261, 1708.
t-Bu
t-Bu
Ph
10
Mg (-Et)
(17) (a) Sannigrahi, A. B.; Kar, T.; Niyogi, B. G.; Hobza, P.; Schleyer,
P. v. R. Chem. ReV. 1990, 90, 1061. (b) Scheiner, S. In Lithium Chemistry;
Sapse, A.-M., Schleyer, P. v. R., Eds.; Wiley: New York, 1995; p 67. (c)
Kollman, P. A.; Liebman, J. F.; Allen, L. C. J. Am. Chem. Soc. 1970, 92,
1142. (d) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. J. Am. Chem. Soc.
1996, 118, 12183.
(18) (a) Schleyer, P. v. R.; Trifan, D. S.; Bacskai, R. J. Am. Chem. Soc.
1958, 80, 6691. (b) Joris, L.; Schleyer, P. v. R.; Gleiter, R. J. Am. Chem.
Soc. 1968, 90, 327. (c) Andrews, A. M.; Hillig, K. W., II; Kuczkowski, R.
L. J. Am. Chem. Soc. 1992, 114, 6765. (d) Buxton, L. W.; Aldrich, P. D.;
Shea, J. A.; Legon, A. C.; Flygare, W. H. J. Chem. Phys. 1981, 75, 2681.
(e) Legon, A. C.; Aldrich, P. D.; Flygare, W. H. J. Am. Chem. Soc. 1982,
104, 1486. (f) Kukolich, S. G. J. Chem. Phys. 1983, 78, 4832.
(19) (a) Steiner, T.; Tamm, M.; Lutz, B.; Mass, J. v. d. Chem. Commun.
1996, 1127. (b) Allen, F. H.; Howard, J. A. K.; Hoy, V. J.; Desiraju, G.
R.; Reddy, D. S.; Wilson, C. C. J. Am. Chem. Soc. 1996, 118, 4081.
(20) (a) Bene, J. E. D.; Frisch, M. J.; Raghavachari, K.; Pople, J. A.;
Schleyer, P. v. R. J. Phys. Chem. 1983, 87, 73. (b) Dykstra, C. E.; Schaefer,
H. F., III J. Am. Chem. Soc. 1978, 100, 1378.
(21) (a) Houk, K. N.; Rondan, N. G.; Schleyer, P. v. R.; Kaufmann, E.;
Clark, T. J. Am. Chem. Soc. 1985, 107, 2821. (b) Plattner, D. A.; Li, Y.;
Houk, K. N. In Modern Acetylene Chemistry; Stang, P. J., Diederich, F.,
Eds.; VCH: Weinheim, 1995; p 1.
(22) Klusener, P. A. A.; Hanekamp, J. C.; Brandsma, L.; Schleyer, P. v.
R. J. Org. Chem. 1990, 55, 1311.
11
12
How do electrostatic π-interactions affect the electronic
structures in metal acetylides? The penetration of the alkali
cations into the acetylide layers in 1-Na-Rb and 2-Na-Cs
increases as the counterions become larger (Scheme 1).4 The
IR ν-CtC stretching frequencies of 1-Na-Cs, 2-Li-Cs, and 13-
(7) Geissler, M.; Kopf, J.; Schubert, B.; Weiss, E.; Neugebauer, W.;
Schleyer, P. v. R. Angew. Chem. 1987, 99, 569; Angew. Chem., Int. Ed.
Engl. 1987, 26, 587.
(8) Schubert, B.; Weiss, E. Chem. Ber. 1983, 116, 3212.
(9) Schubert, B.; Weiss, E. Angew. Chem. 1983, 95, 499; Angew. Chem.,
Int. Ed. Engl. 1983, 22, 496.
(10) Bell, N. A.; Nowell, I. W.; Shearer, H. M. M. J. Chem. Soc., Chem.
Commun. 1982, 147.
(11) Schubert, B.; Weiss, E. Chem. Ber. 1984, 117, 366.
(12) Geissler, W.; Kopf, J.; Weiss, E.; Chem. Ber. 1989, 122, 1395.
(13) Viebrock, H.; Abeln, D.; Weiss, E. Z. Naturforsch. 1994, B49, 89.
(14) Troyanov, S.; Varga, V.; Mach, K. Organometallics 1993, 12, 2820.
(23) More covalent contributions are apparent in transition metal
π-acetylene complexes, e.g.: (a) Chi, K.-M.; Lin, C.-T.; Peng, S.-M.; Lee,
G.-H. Organometallics 1996, 15, 2660. (b) Mingos, D. M. P.; Yau, J.;
Menzer, S.; Williams, D. J. Angew. Chem. 1995, 107, 2045; Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1894.