6
8
R. Krishnaveni et al. / Journal of Photochemistry and Photobiology A: Chemistry 229 (2012) 60–68
with increasing concentrations of the acceptors indicate that FRET
is happening between the ˇ-CDen-ADR and the acceptors. The FRET
efficiency of acridinedione modified ˇ-CDen-ADR was compared
with that of a free ADR and found it was more in case of the mod-
ified compound, the reason being the inclusion of acceptor into
the cavity of cyclodextrin. Thus, the ˇ-CD modified dye was found
to behave as a persuasive energy donor in the FRET experiments
carried out.
[19] M.N. Berberan-Santos, J. Pouget, B. Valeur, J. Canceill, L. Jullien, J.M. Lehn,
Multichromophoric cyclodextrins. 2. Inhomogeneous spectral broadening and
directed energy hopping, J. Phys. Chem. 97 (1993) 11376–11379.
[
20] R. Freeman, T. Finder, L. Bhashi, I. Willner, Beta-cyclodextrin-modified CdSe/Zns
quantum dots for sensing and chiroselective analysis, Nano Lett. 9 (2009)
2073–2076.
[
21] P. Murugan, P. Shnamugasundaram, V.T. Ramakrishnan, B. Venkatachalapa-
thy, N. Srividya, P. Ramamurthy, K. Gunasekaran, D. Velmurugan, Synthesis
and laser properties of 9-alkyl-3, 3, 6, 6-tetramethyl 1,2,3,4,5,6,7,8,9,10-
decahydroacridine-1,8-dionederivatives, J. Chem. Soc., Perkin Trans. 2 (1998)
999–1003.
[
[
[
[
[
22] N. Srividya, P. Ramamurthy, P. Shanmugasundaram, V.T. Ramakrishnan, Syn-
thesis, characterisation and electrochemistry of some acridine-1,8-dione dyes,
J. Org. Chem. 61 (1996) 5083–5089.
23] Y.P. Huang, W. Ma, J. Li, M. Chang, J. Zhao, A. Novel, -CD-hemin complex pho-
tocatalyst for efficient degradation of organic pollutants at neutral pHs under
visible irradiation, J. Phys. Chem. B 107 (2003) 9409–9414.
Acknowledgements
We thank the Department of Science and Technology, Govern-
24] M. Xu, S. Wu, F. Zeng, C. Yu, Cyclodextrin supramolecular complex as a
water soluble ratiometric sensor for ferric ion sensing, Langmuir 26 (2010)
Appendix A. Supplementary data
4529–4534.
25] R. Freeman, T. Finder, L. Bahshi, I. Willner, -Cyclodextrin-modified CdSe/ZnS
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jphotochem.2011.12.007.
quantum dots for sensing and chiroselective analysis, Nano Lett. 9 (2009)
2073–2076.
26] H. Tatakusa, K. Kikuchi, Y. Urano, T. Highuchi, T. Nagano, Intramolecular fluores-
cence energy transfer system with coumarin donor included in ˇ-cyclodextrin,
Anal. Chem. 73 (2001) 939–942.
References
[
27] R. Kumaran, P. Ramamurthy, PET suppression of acridinedione dyes by urea
derivatives in water and methanol, J. Phys. Chem. B 110 (2006) 23783–23789.
28] R.C. Petter, J.S. Salek, C.T. Sikorski, G. Kumaravel, F. Lin, Cooperative binding
by aggregated mono-6-(alkylamino)-ˇ-cyclodextrins, J. Am. Chem. Soc. 112
[1] J. Boger, R.J. Corcoran, J.M. Lehn, Cyclodextrin chemistry selective modification
[
of all primary hydroxyl groups of ␣- and -cyclodextrins, Helv. Chem. Acta 61
(
1978) 2190–2217, Fasc. 6.
(
1990) 3860–3868.
[
[
[
2] A.P. Croft, R.A. Bartsch, Synthesis of chemically modified cyclodextrins, Tetra-
hedron Lett. 39 (1983) 1417–1474.
3] K.A. Connors, The stability of cyclodextrin complexes in solution, Chem. Rev.
[
29] B.L. May, S.D. Kean, C.J. Easton, S.F. Lincoln, Preparation and characterisation of
A
6
1
–polyamine–mono-substituted ˇ-cyclodextrins, J. Chem. Soc., Perkin Trans.
(1997) 3157–3160.
9
7 (1997) 1325–1357.
[
[
[
[
30] K. Joseph Prabhakar, V.T. Ramakrishnan, D. Sasikumar, S. Selladurai, V. Masila-
mani, Ind. J. Pure Appl. Phys. 29 (1991) 382.
4] T. Nguyen, N.S. Joshi, M.B. Francis, An affinity-based method for the
purification of fluorescently-labeled, Biomol. Bioconjugate Chem. 17 (2006)
31] N. Srividya, P. Ramamurthy, Synthesisof acridinedionedyesas laserderivatives,
Heteroatom Chem. 7 (1996) 17–22.
8
69–872.
[5] D. Rong, V.T. D’Souza, A convenient method for functionalization of the 2-
position of cyclodextrins, Tetrahedron. Lett. 31 (1990) 4275–4278.
a
a
a
32] K. Fujita, T. Ishizu, K. Oshiro, K. Obe, 2 ,2B-,2 ,2C-and 2 ,2D-bis-O-(p-
tolylsulfonyl)-ˇ-cyclodextrins, Bull. Chem. Soc. Jpn. 62 (1989) 2960–2962.
33] I.W. Muderawan, T.T. Ong, T.C. Lee, D.J. Young, C.B. Ching, S.C. Ng, A reliable syn-
thesis of 2- and 6-amino ˇ-cyclodextrin and permethylated--cyclodextrin,
Tetrahedron. Lett. 46 (2005) 7905–7907.
[6] K. Patel, S. Angelos, W.R. Dichtel, A. Coskun, Y. Yang, J.I. Zink, J.F. Stoddart,
Enzyme-responsive snap-top covered silica nanocontainers, J. Am. Chem. Soc.
1
30 (2008) 2382–2383.
[
[
[
7] G. Wenz, Cyclodextrins as building blocks for supramolecular structures and
functional units, Angew. Chem. Int. Ed. Eng. 33 (1994) 803–822.
8] A.R. Khan, P. Forgo, K.J. Stine, V.T. D’Souza, Methods for selective modifications
of cyclodextrins, Chem. Rev. 98 (1998) 1977–1996.
9] H. Nakashima, N. Yoshida, Fluorescent detection for cyclic and acyclic alcohol
guests by naphthalene appended amino ˇ-cyclodextrins, Org. Lett. 8 (2006)
[
34] P. Karunanithi, P. Ramamurthy, V.T. Ramakrishnan, Binding of acridinedione
dyes with ˛, ˇ and ꢀ-cyclodextrins: fluorescence quenching and estimation
of thermodynamic parameters, J. Incl. Phenom. Macrocycl. Chem. 34 (1999)
105–114.
[
[
[
35] N. Srividya, P. Ramamurthy, V.T. Ramakrishnan, Photophysical studies of
acridinedione (1,8)dyes: a new class of laser dyes, Spectrochim. Acta Part A
4
997–5000.
54 (1998) 248–253.
[
10] Y. Liu, C.C. You, Y. Chen, T. Wada, Y. Inove, Molecular recognition studies
on supramolecular systems. 25. Inclusion complexation by organoselenium-
bridged bis (ˇ-cyclodextrins) and their platinum (IV) complexes, J. Org. Chem.
36] V.K. Indirapriyadharshini, P. Karunanithi, P. Ramamurthy, Inclusion of
resorcinol-based acridinedione dyes in cyclodextrins: fluorescence enhance-
ment, Langmuir 17 (2001) 4056–4060.
6
4 (1999) 7481–7787.
37] N. Srividya, P. Ramamurthy, V.T. Ramakrishnan, Solvent effects on the absorp-
tion and fluorescence spectra of some acridinedione dyes: determination of
ground and excited state dipole moments, Spectrochim. Acta Part A 53 (1997)
[
[
11] Y. Liu, B. Li, C.C. You, T. Wada, Y. Inoue, Molecular recognition studies on
supramolecular systems. 32. Molecular recognition of dyes by organoselenium-
bridged bis (ˇ-cyclodextrins)s, J. Org. Chem. 66 (2001) 225–232.
12] A. Ueno, S. Minato, I. Suzuki, M. Fukushima, M. Ohkubo, T. Osa, F. Hamada,
K. Murai, Host–guest sensory system of dansyl modified ˇ-cyclodextrin for
detecting steroidal compounds by dansyl fluorescence, Chem. Lett. 19 (1990)
1743–1753.
[
38] P. Shanmugasundaram, P. Murugan, V.T. Ramakrishnan, N. Srividya, P. Rama-
murthy, Synthesis of acridinedione derivatives as laser dyes, Heteroatom Chem.
7
(1996) 17–22.
6
05–608.
[
[
[
39] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenium Press, New
[
13] B.D. Wagner, P.J. MacDonald, M. Wagnerual, Demonstration of supramolecular
chemistry: a visual demonstration of supramolecular chemistry: observable
fluorescence enhancement upon host–guest inclusion, J. Chem. Ed. 77 (2000)
York, 1983.
40] H.M. Watrob, C.P. Pan, M.D. Barkley, Two-step FRET as a structural tool, J. Am.
Chem. Soc. 125 (2003) 7336–7343.
1
78–180.
41] P.D. Sahare, V.K. Sharma, D. Mohan, A.A. Rupasov, Energy transfer studies
in binary dye solution mixtures: Acriflavine+Rhodamine 6G and Acri-
flavine+Rhodamine B, Spectrochim. Acta. Part A 69 (2008) 1257–1264.
42] R.A. Auerbach, G.W. Robinson, R.W. Zwanzig, Diffusion modulated
[
[
[
14] D. Becuwe, F. Landy, D.F. Cazier, S. Fourmentin, Fluorescent indolizine -
cyclodextrin derivatives for the detection of volatile organic compounds,
Sensors 8 (2008) 3689–3705.
15] M. Narita, S. Koshizaka, F. Hamada, Fluorescent pyrrolinone-modified cyclodex-
trins as a chemo-sensor for organic guests, J. Incl. Phenom. Macrocycl. Chem.
[
donor–acceptor energy transfer in
2 (1980) 3528–3538.
a disordered system, J. Chem. Phys.
7
3
5 (1999) 605–619.
[
43] H. Sahoo, D. Roccatano, M. Zacharias, W.M. Nau, Distance distributions of short
16] A. Qi, L. Li, Y. Liu, Molecular binding ability and selectivity of ˛-, ˇ-, (-
cyclodextrins and oligo (ethylenediamino) modified ˇ-cyclodextrins with
Chinese traditional medicines, J. Incl. Phenom. Macrocycl. Chem. 45 (2003)
polypeptides recovered by fluorescence resonance energy transfer in the 10 A˚
domain, J. Am. Chem. Soc. 128 (2006) 8118–8119.
[
44] B. Jain, K. Das, Fluorescence resonance energy transfer between DPH and Nile
Red in a lipid bilayer, Chem. Phys. Lett. 433 (2006) 170–174.
45] Z. Yuan, M. Zhu, S. Han, Supramolecular inclusion complex formation and appli-
cation of -cyclodextrin with heteroanthracene ring cationic dyes, Anal. Chem.
Acta 389 (1999) 291–298.
6
9–72.
[
[
17] R. Breslow, M.F. Czarneiki, J. Emert, H. Hamaguchi, Improved acylation
rates with cyclodextrin complexes from flexible capping of cyclodextrin and
from adjustment of the substrate geometry, J. Am. Chem. Soc. 102 (1980)
[
7
62–770.
18] S.E. Webber, Photon harvesting polymers, Chem. Rev. 90 (1990) 1469–1482.