N.K. Singh et al. / Polyhedron 29 (2010) 1902–1909
1909
Table 6
m)(o-phen)2]ClꢀCH3OH (5). These data can be obtained free of
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
Selected bond lengths (Å) and angles (°) for [Ni(Hpchcm)(o-phen)2]ClꢀCH3OH.
Bond lengths
Ni1–O1
Ni1–N5
Ni1–N3
Ni1–N1
Ni1–N2
Ni1–N4
S1–C26
S2–C26
2.037(3)
2.094(4)
2.081(4)
2.108(4)
2.112(4)
2.118(4)
1.690(5)
1.799(5)
S2–C25
O1–C27
N5–C26
N6–C27
N6–N5
N7–C30
N7–C31
C33–O2
1.805(5)
1.300(5)
1.312(5)
1.297(5)
1.405(5)
1.337(7)
1.304(7)
1.407(15)
Acknowledgements
Authors are thankful to Prof. Ray. J. Butcher, Department of
Chemistry, Howard University, 525 College Street NW, Washing-
ton, DC 20059, USA for his help in solving the crystal structure of
compound 2 and to Prof. P. Mathur, Department of Chemistry,
I.I.T, Bombay, Powai, Mumbai, India for analyzing the crystal struc-
tures of compounds 3 and 4.
Bond angles
O1–Ni1–N1
O1–Ni1–N5
O1–Ni1–N3
O1–Ni1–N2
O1–Ni1–N4
N3–Ni1–N5
N3–Ni1–N1
N3–Ni1–N2
N5–Ni1–N2
N1–Ni1–N2
N3–Ni1–N4
N5–Ni1–N4
N1–Ni1–N4
170.76(14)
78.39(13)
95.83(14)
92.21(14)
89.23.(13)
98.32(14)
93.39(14)
167.78(15)
92.29(14)
78.58(15)
79.46(14)
167.8(14)
91.82(14)
N2–Ni1–N4
C26–S2–C25
C27–O1–Ni1
C26–N5–N6
C26–N5–Ni1
N6–N5–Ni1
C27–N6–N5
N5–C26–S1
N5–C26–S2
S1–C26–S2
O1–C27–C28
N6–C27–O1
N6–C27–C28
91.50(14)
103.7(3)
109.3(3)
114.1(4)
135.9(3)
109.6(2)
112.9(3)
123.6(4)
115.0(3)
121.4(2)
118.3(4)
125.6(4)
116.0(4)
References
[1] M.A. Ali, M.T.H. Tarafder, J. Inorg, Nucl. Chem. 39 (1977) 1785.
[2] M.A. Ali, C.M. Haroon, M. Nazimuddin, S.M.M.H. Majumder, M.T.H. Tarafder,
M.A. Khair, Transition Met. Chem. 17 (1992) 133.
[3] M.E. Hossain, M.N. Alam, J. Begum, M.A. Ali, M. Nazimuddin, F.E. Smith, R.C.
Hynes, Inorg. Chim. Acta 249 (1996) 207.
[4] M.E. Hossain, J. Begum, M.N. Alam, M. Nazimuddin, M.A. Ali, Transition Met.
Chem. 18 (1993) 497.
[5] M. Nazimuddin, M.A. Ali, F.E. Smith, M.A. Mridha, Transition Met. Chem. 17
(1992) 74.
[6] M.A. Ali, M.H. Kabir, M. Nazimuddin, S.M.M.H. Majumder, M.T.H. Tarafder, M.A.
Khair, Indian J. Chem. 27A (1988) 1064.
[7] M.T.H. Tarafder, M.A. Ali, D.J. Wee, K. Azahari, S. Silong, D.A. Crouse, Transition
Met. Chem. 25 (2000) 456.
[8] S. Gou, X. You, Z. Xu, Z. Zhou, K. Yu, Polyhedron 10 (1991) 1363.
[9] A. Mitra, T. Banerjee, P. Roychowdhury, S. Chaudhuri, P. Bera, N. Saha,
Polyhedron 16 (1997) 3735.
[10] X.-H. Zhu, S.-H. Liu, Y.-J. Liu, J. Ma, C.-Y. Duan, X.-Z. You, Y.-P. Tian, F.-X. Xie,
S.-S. Ni, Polyhedron 18 (1998) 181.
[11] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
[12] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Gottingen, Germany, 1997.
[13] I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J.
Pearson, R. Taylor, Acta Crystallogr., Sect. B 58 (2002) 389.
[14] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[15] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fourth ed., Wiley Interscience, New York, 1986.
[16] N.K. Singh, S.B. Singh, Transition Met. Chem. 26 (2001) 487.
[17] A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1984.
[18] N.K. Singh, A.K. Pandey, M. Singh, M.K. Bharty, R.J. Butcher, Acta Crystallogr.,
Sect. E 63 (2007) o4327.
[19] P. Tripathi, A. Pal, V. Jancik, A.K. Pandey, J. Singh, N.K. Singh, Polyhedron 26
(2007) 2597.
[20] L.E. Sutton, Tables of Interatomic Distances and Configuration in Molecules
and Ions, Special Publication No. 18, The Chemical Society, London, 1965.
[21] J.R. Dilworth, J. Hyde, P. Lyford, P. Vella, K. Venkatasubramaman, J.A. Zubieta,
Inorg. Chem. 18 (1979) 268.
[22] A. Sreekanth, U.L. Kala, C.R. Nayar, M.R.P. Kurup, Polyhedron 23 (2004) 41.
[23] S. Roy, T.N. Mandal, A.K. Barik, S. Pal, S. Gupta, A. Hazra, R.J. Butcher, A.D.
Hunter, M. Zeller, S.K. Kar, Polyhedron 26 (2007) 2603.
[24] M. Calvin, K.W. Wilson, J. Am. Chem. Soc. 67 (1945) 2003.
[25] H. Masui, Coord. Chem. Rev. 219 (2001) 957.
0.95:0.05 and 0.41:0.59, respectively. The (N, O) donor sites of the
uninegative bidentate ligand chelate the Ni(II) center to form a
five-membered CN2ONi ring. The resulting complex has a distorted
octahedral geometry. The average bond lengths in complex 5 are:
O1–C27 = 1.300(5), N6–C27 = 1.297(5), N5–N6 = 1.405(5), N5–
C26 = 1.312(5) Å, which suggest considerable delocalization of
charge [23]. Complex 5 is stable in the solid state due to
p electron
delocalization and weak intermolecular C–HꢀꢀꢀCl interactions be-
tween CH3 and the phenyl ring hydrogens as well as by O–HꢀꢀꢀO
interactions between the OH of methanol and the carbonyl oxygen
from the chelate ring.
5. Conclusions
Two new ligands [N0-(pyridine-4-carbonyl)-hydrazine]-carbo-
dithioic acid methyl (H2pchcm) (1) and ethyl (H2pchce) (2) esters
and their [Mn(Hpchce)2(o-phen)] (3), {2[Mn(pchcm)(o-phen)2]}ꢀ
7H2O (4) and [Ni(Hpchcm)(o-phen)2]ClꢀCH3OH (5) complexes have
been synthesized. The crystal structure of complex 3 is stabilized
through weak intermolecular C–HꢀꢀꢀS interactions between the thi-
oether sulfur of one molecule and a methyl hydrogen atom of a
nearby molecule. The crystals of 3, 4 and 5 are stabilized by inter-
molecular and intramolecular hydrogen bonding.
6. Supplementary data
CCDC 682361, 682360, 715927 and 737839 contain the sup-
plementary crystallographic data for H2pchce (2), [Mn(Hpchce)2
(o-phen)] (3) {2[Mn((pchcm)(o-phen)2]}ꢀ7H2O (4) and [Ni(Hpchc-
[26] S.G. Baca, Y. Sevryugina, R. Clerac, I. Malaestean, N. Gerbeleu, M.A. Petrukhina,
Inorg. Chem. Comm. 8 (2005) 474.
[27] X. Zhang, D. Huang, F. Chen, C. Chen, Q. Liu, Inorg. Chem. Comm. 8 (2004) 662.