ORGANIC
LETTERS
2004
Vol. 6, No. 9
1497-1499
Zn-Alkynylide Additions to Acyl
Iminiums
Christian Fischer and Erick M. Carreira*
Laboratorium fu¨r Organische Chemie, ETH Ho¨nggerberg,
CH-8093 Zu¨rich, Switzerland
Received March 7, 2004
ABSTRACT
A new addition reaction of zinc-alkynylides to N-acyl and N-phosphinoyl iminiums is reported. These can be prepared in situ from imines with
acid halides in the presence of a Zn-acetylide. The reaction is general with regard to imine, alkyne, and acid halides, allowing access to a large
number of differentially protected propargylic amines.
Propargylic amines, like the corresponding propargylic
alcohols, can serve as high-value added intermediates and
building blocks for organic synthesis.1,2 However, while
propargylic alcohols can be conveniently prepared using a
variety of synthetic transformations,3-5 in general, methods
that provide reliable and convenient access to propargylic
amines are far fewer.6-8 Recently, we9 and others10 have
reported the addition reaction of terminal alkynes to imines
catalytic in transition metal. Our continuing interest in the
chemistry of zinc-alkynylides11 prepared directly from
terminal alkynes and zinc salts with trialkylamine bases have
led us to the discovery that imines activated in situ with a
range of acid halides serve as reactive electrophiles toward
addition by zinc-alkynylides.
There have been numerous reports on the addition reaction
of 1-alkynes and imines proceeding via Zn-acetylides,
generated from terminal acetylenes under the novel condi-
tions we reported (Zn(OTf)2, R3N, 23 °C). In general, these
(6) For addition of alkynilides to imines, see: (a) Enders, D.; Schankat,
J. HelV. Chim. Acta 1995, 78, 970. (b) Harwood, L. M.; Vines, K. J.; Drew,
M. G. B. Synlett 1996, 1051. (c) Brasseur, D.; Marek, I.; Normant, J.-F.
Tetrahedron 1996, 52, 7235. (d) Sato, Y.; Nishimata, T.; Mori, M.
Heterocycles 1997, 44, 443. (e) Cossy, J.; Poitevin, C.; Pardo, D. G.; Peglion,
J.-L.; Dessinges, A. Synlett 1998, 3, 251. (f) Courtois, G.; Desre, V.;
Miginiac, L. J. Organomet. Chem. 1998, 570, 279. (g) Florio, S.; Troisi,
L.; Capriati, V.; Suppa, G. Eur. J. Org. Chem. 2000, 65, 3793. (h) Wipf,
P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2001, 123, 5122.
(7) For Cu-mediated addition of acetylene gas to N-alkyl imines at
elevated temperatures, see: Rohm + Haas Co. U.S. Patent 2 665 311, 1950.
(8) For representative additions of other carbanions to imines, see: (a)
Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998,
120, 4548. (b) Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1999, 121,
268. (c) Hamada, T.; Mizojiri, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc.
2000, 122, 7138. (d) Knudsen, K.; Risgaard, T.; Nishiwaki, N.; Gothelf,
K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123, 5843. (e) Porter, J.
R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc.
2001, 123, 984.
(1) (a) Porco, J. A., Jr.; Schoenen, F. J.; Stout, T. J.; Clardy, J.; Schreiber,
S. L. J. Am. Chem. Soc. 1990, 112, 7410.
(2) For selected examples of the use of optically active propargylic
alcohols in synthesis, see: (a) Trost, B. M.; Hipskind, P. A.; Chung, J. Y.
L.; Chan, C. Angew. Chem., Int. Ed. Engl. 1989, 28, 1502. (b) Marshall, J.
A.; Wang, X. J. J. Org. Chem. 1992, 57, 1242. (c) Roush, W. R.; Sciotti,
R. J. J. Am. Chem. Soc. 1994, 116, 6457. (d) Myers, A. G.; Zheng, B. J.
Am. Chem. Soc. 1996, 118, 4492.
(3) Stoichiometric reductions: (a) Midland, M. M.; Tramontano, A.;
Zderic, S. A. J. Am. Chem. Soc. 1977, 99, 5211. (b) Yamaguchi, S.; Mosher,
H. S.; Pohland, A. J. Am. Chem. Soc. 1972, 94, 9254. (c) Nishizawa, M.;
Yamada, M.; Noyori, R. Tetrahedron Lett. 1981, 22, 247. (d) Brown, H.
C.; Ramachandran, P. V. Acc. Chem. Res. 1992, 25, 16.
(4) Catalytic methods: (a) Helal, C. J.; Magriotis, P. A.; Corey, E. J. J.
Am. Chem. Soc. 1996, 118, 10938. (b) Matsumura, K.; Hashiguchi, S.;
Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738.
(5) For the addition of lithium and magnesium acetylides to trifluoro-
methyl aryl ketones, see: (a) Tan, L.; Chen, C.-Y.; Tillyer, R. D.;
Grabowski, E. J. J.; Reider, P. Angew. Chem., Int. Ed. 1999, 38, 711. (b)
For a recent report on the addition of aromatic aldehydes with alkynylzinc
reagents generated in situ from terminal acetylenes and dimethylzinc, see;
Li, Z.; Upadhyay, V.; DeCamp, A. E.; DiMichele, L.; Reider, P. J. Synthesis
1999, 1453. (c) For a recent study of chelation-controlled stannylacetylene
additions to aldehydes, see: Evans, D. A.; Halstead, D. P.; Allison, B. D.
Tetrahedron Lett. 1999, 40, 4461.
(9) Fischer, C.; Carreira, E. M. Org. Lett. 2001, 3, 4319.
(10) (a) Li, C.-J.; Wei, C. Chem. Commun. 2002, 268. (b) Wei, C.; Li,
C.-J. J. Am. Chem. Soc. 2002, 124, 5638. (c) Wei, C.; Li, Z.; Li, C.-J. Org.
Lett. 2003, 5, 4473. (d) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125,
9584. (e) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed.
2002, 41, 2535. (f) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel,
P. Chem. Eur. J. 2003, 9, 2797. (g) Gommermann, N.; Koradin, C.; Polborn,
K.; Knochel, P. Angew. Chem., Int. Ed. 2003, 42, 5763.
10.1021/ol049578u CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/07/2004