Full Papers
Z. M. Yang, H. Y. Cao, Z. W. Yang, J. H. Tong, X. Q. Yao, Z. Q. Lei, ACS
Appl. Mater. Interfaces 2016, 8, 8341–8348.
Conclusion
[2] a) R. Zhang, Y. Yuan, J. Liang, R. T. Kwok, Q. Zhu, G. Feng, J. Geng, B. Z.
Tang, B. Liu, ACS Appl. Mater. Interfaces 2014, 6, 14302–14310; b) X. Lu,
W. Wang, Q. Dong, X. Bao, X.; Lin, W. Zhang, X. Dong, W. Zhao, Chem.
Commun. 2015, 51, 1498–1501; c) Y. Zhang, X. Shao, Y. Wang, F. Pan, R.
Kang, F. Peng, Z. Huang, W. Zhang, W. Zhao, Chem. Commun. 2015, 51,
4245–4248; d) N. Zhao, J. W. Lam, H. H. Sung, H. M. Su, I. D. Williams,
K. S. Wong, B. Z. Tang, Chem. Eur. J. 2014, 20, 133–138; e) A. Fermi, G.
Bergamini, M. Roy, M. Gingras, P. Ceroni, J. Am. Chem. Soc. 2014, 136,
6395–6400; f) Q. K. Qi, J. Y. Qian, S. Q. Ma, B. Xu, S. X. A. Zhang, W. J.
Tian, Chem. Eur. J. 2015, 21, 1149–1155.
[3] a) L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Angew. Chem.
Int. Ed. 2014, 53, 2119–2123; Angew. Chem. 2014, 126, 2151–2155;
b) W. Qin, J. W. Lam, Z. Yang, S. Chen, G. Liang, W. Zhao, H. S. Kwok,
B. Z. Tang, Chem. Commun. 2015, 51, 7321–7324; c) J. Huang, R. Tang,
T. Zhang, Q. Li, G. Yu, S. Xie, Y. Liu, S. Ye, J. Qin, Z. Li, Chem. Eur. J. 2014,
20, 5317–5326; d) J. J. McDowell, D. Gao, D. S. Seferos, G. Ozin, Polym.
Chem. 2015, 6, 3781–3789.
It was demonstrated that two representative red-emitting TPA-
based derivatives, IND-TPAT and IND-TPA, were synthesized.
Both derivatives demonstrated evident AIE properties, solvato-
chromism effects, and piezochromic behavior. The XRD and
cycle measurements reveal that the piezochromic property is
mainly caused by a transition from crystalline to an amorphous
phase. In addition, IND-TPAT and IND-TPA could be used as
fluorescence probes to detect Fꢀ and Iꢀ sensitively; detection
could even be performed by the naked eye. Furthermore, our
work explored a new strategy to synthesize red and near-infra-
red materials with piezochromic performances. Further re-
search into synthetic protocols and applications is underway.
[4] a) J. Tong, Y. Wang, J. Mei, J. Wang, A. Qin, J. Z. Sun, B. Z. Tang, Chem.
Eur. J. 2014, 20, 4661–4670; b) S. Kohmoto, T. Chuko, S. Hisamatsu, Y.
Okuda, H. Masu, M. Takahashi, K. Kishikawa, Cryst. Growth Des. 2015, 15,
2723–2731; c) T. T. Tasso, T. Furuyama, N. Kobayashi, Chem. Eur. J. 2015,
21, 4817–4824; d) G. R. Krishna, M. S. R. N. Kiran, C. L. Fraser, U. Rama-
murty, C. M. Reddy, Adv. Funct. Mater. 2013, 23, 1422–1430; e) X. Luo, J.
Li, C. Li, L. Heng, Y. Q. Dong, Z. Liu, Z. Bo, B. Z. Tang, Adv. Mater. 2011,
23, 3261–3265; f) C. Niu, Y. You, L. Zhao, D. He, N. Na, J. Ouyang, Chem.
Eur. J. 2015, 21, 13983–13990; g) Q. K. Qi, J. Y. Qian, X. Tan, J. B. Zhang,
L. J. Wang, B. Xu, B. Zou, W. J. Tian, Adv. Funct. Mater. 2015, 25, 4005–
4010; h) Q. K. Qi, J. B. Zhang, B. Xu, B. Li, S. X. A. Zhang, W. J. Tian, J.
Phys. Chem. C 2013, 117, 24997–25003.
Experimental Section
Synthesis and characterization of IND-TPAT and IND-TPA
5-(4-Diphenylaminophenyl)thiophene-2-carbaldehyde (TPAT) was
synthesized by 4-bromophenyl)diphenylamine Suzuki coupling
with 5-formylthiophene-2-boronic acid. TPAF was prepared accord-
ing to the Vilsmeier–Haack reaction. IND-TPAT and IND-TPA were
synthesized from the precursor TPAT and TPAF through Knoevena-
gel condensation with IND (Scheme 1).[28] The obtained com-
pounds were characterized by H NMR, 13C NMR, and FTIR spectros-
1
[5] Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388.
[6] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S.
Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun. 2001, 1740–1741.
[7] a) Y. Hong, J. W. Lam, B. Z. Tang, Chem. Commun. 2009, 4332–4353;
b) J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams,
D. Zhu, B. Z. Tang, Chem. Mater. 2003, 15, 1535–1546.
[8] a) Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Chem.
Soc. Rev. 2012, 41, 3878–3896; b) S. Varughese, J. Mater. Chem. C 2014,
2, 3499–3516; c) X. Zhang, Z. Chi, Y. Zhang, S. Liu, J. Xu, J. Mater. Chem.
C 2013, 1, 3376–3390.
copy (see the Supporting Information).
Instrumentation
1H (600 MHz) and 13C NMR (100 MHz) spectra were recorded on
a Mercury spectrometer at 258C. UV/Vis absorption spectra were
recorded on a TU-1901 spectrometer from l=190 to 1100 nm.
Fluorescence spectra were measured by using a PE LS-55 lumines-
cence/fluorescence spectrophotometer. FTIR spectra were recorded
on a DIGIL FTS3000 spectrophotometer as KBr pellets. XRD pat-
terns of IND-TPAT and IND-TPA were examined on a Phillips diffrac-
tometer by using Ni-filtered CuKa radiation.
[9] a) S. J. Lim, B. K. An, S. D. Jung, M. A. Chung, S. Y. Park, Angew. Chem. Int.
Ed. 2004, 43, 6346–6350; Angew. Chem. 2004, 116, 6506–6510; b) C.
Dou, D. Chen, J. Iqbal, Y. Yuan, H. Zhang, Y. Wang, Langmuir 2011, 27,
6323–6329.
[10] W. Z. Yuan, P. Lu, S. Chen, J. W. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma,
B. Z. Tang, Adv. Mater. 2010, 22, 2159–2163.
[11] a) H. Ma, C. Qi, H. Cao, Z. Zhang, Z. Yang, B. Zhang, C. Chen, Z. Q. Lei,
Chem. Asian J. 2016, 11, 58–63; b) Y. Ma, H. Ma, Z. Yang, J. Ma, Y. Su, W.
Li, Z. Lei, Langmuir 2015, 31, 4916–4923.
Acknowledgements
This study was supported by the National Natural Science Foun-
dation of China (nos. 21202133 and 21361023). We thank the
Key Laboratory of Eco-Environment-Related Polymer Materials
(Northwest Normal University) and The Ministry of Education
Scholars Innovation Team (IRT 1177) for financial support. We
also thank the Analytical and Testing Centre of Northwest
Normal University for related analysis.
[12] a) M. Kleerekoper, Endocrinol. Metab. Clin. North Am. 1998, 27, 441–452;
b) X. Zheng, W. Zhu, D. Liu, H. Ai, Y. Huang, Z. Lu, ACS Appl. Mater. Inter-
faces 2014, 6, 7996–8000; c) S. Mohapatra, S. Sahu, S. Nayak, S. K.
Ghosh, Langmuir 2015, 31, 8111–8120.
[13] a) S. Ayoob, A. K. Gupta, Crit. Rev. Environ. Sci. Technol. 2006, 36, 433–
487; b) P. Singh, M. Barjatiya, S. Dhing, R. Bhatnagar, S. Kothari, V. Dhar,
Urol. Res. 2001, 29, 238–244.
[14] a) F. Han, Y. Bao, Z. Yang, T. M. Fyles, J. Zhao, X. Peng, J. Fan, Y. Wu, S.
Sun, Chem. Eur. J. 2007, 13, 2880–2892; b) R. Hu, J. Feng, D. Hu, S.
Wang, S. Li, Y. Li, G. Yang, Angew. Chem. Int. Ed. 2010, 49, 4915–4918;
Angew. Chem. 2010, 122, 5035–5038; c) J. A. Gu, V. Mani, S. T. Huang,
Analyst 2015, 140, 346–352.
[15] a) B. Ke, W. Chen, N. Ni, Y. Cheng, C. Dai, H. Dinh, B. Wang, Chem.
Commun. 2013, 49, 2494–2496; b) M. Cametti, K. Rissanen, Chem.
Commun. 2009, 2809–2829.
Keywords: aggregation
piezochromism · sensors
·
conjugation
·
luminescence
·
[1] a) Z. Wang, T. Y. Yong, J. Wan, Z. H. Li, H. Zhao, Y. Zhao, L. Gan, X. L.
Yang, H. B. Xu, C. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 3420–
3425; b) Z. Li, C. S. Theile, G. Y. Chen, A. M. Bilate, J. N. Duarte, A. M.
Avalos, T. Fang, R. Barberena, S. Sato, H. L. Ploegh, Angew. Chem. Int. Ed.
2015, 54, 11706–11710; Angew. Chem. 2015, 127, 11872–11876; c) Z.
Wang, S. Chen, J. W. Lam, W. Qin, R. T. Kwok, N. Xie, Q. Hu, B. Z. Tang, J.
Am. Chem. Soc. 2013, 135, 8238–8245; d) H. C. Ma, C. X. Qi, C. Cheng,
[16] a) X. Cheng, S. Li, G. Xu, C. Li, J. Qin, Z. Li, ChemPlusChem 2012, 77,
908–913; b) A. Lafleur-Lambert, J. B. Giguꢃre, J. F. Morin, Macromole-
cules 2015, 48, 8376–8381.
[17] a) Q. Wang, Y. Xie, Y. Ding, X. Li, W. Zhu, Chem. Commun. 2010, 46,
3669–3671; b) Y. Zhou, J. F. Zhang, J. Yoon, Chem. Rev. 2014, 114, 5511–
5571.
&
ChemPlusChem 2016, 81, 1 – 10
8
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÝÝ These are not the final page numbers!