Photocyanation of Naphthalene
J. Phys. Chem. A, Vol. 102, No. 28, 1998 5463
(15) (a) Van Ginkel, F. I. M.; Cornelisse, J.; Lodder, G. J. Am. Chem.
Soc. 1991, 113, 4261-4272. (b) Van Ginkel, F. I. M.; Cornelisse, J.; Lodder,
G. J. Photochem. Photobiol., A. 1991, 61, 301-315.
(16) (a) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.
R. Vogel’s Textbook of Practical Organic Chemistry, 5th ed.; Longman
Scientific and Technical: Harlow, U.K., 1989; p 863. (b) Yonemitsu, T.;
Kubo, K.; Gondo, Y. Memoirs of the Faculty of Science, Kyushu UniVersity,
Ser. C; 1987, 16, 13-18; CA 1988, 108, 221190n.
(17) Friedman, L.; Shechter, H. J. Org. Chem. 1961, 26, 2522-2524.
(18) Gebert, H.; Regenstein, W.; Bendig, J.; Kreysig, D. Z. Phys. Chem.
(Leipzig) 1982, 263, 65-73.
(19) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209-220. (b) Stewart,
J. J. P. J. Comput. Chem. 1989, 10, 221-245.
(20) (a) Dewar, M. J. S. The Molecular Orbital Theory of Organic
Chemistry; McGraw-Hill: New York, 1969; pp 249-278. Descriptions of
reactions of radical cations with nucleophiles using this method were shown
to be in accordance with experimentally observed reaction patterns; for
example, see: (b) Zuilhof, H.; Vertegaal, L. B. J.; Van der Gen, A.; Lodder,
G. J. Org. Chem. 1993, 58, 2804-2809. (c) Dinnocenzo, J. P.; Zuilhof,
H.; Lieberman, D. R.; Simpson, T. R.; McKechney, M. W. J. Am. Chem.
Soc. 1997, 119, 994-1004.
(21) (a) Zuilhof, H.; Lodder, G. J. Phys. Chem. 1992, 96, 6957-6962.
(b) Zuilhof, H.; Lodder, G. J. Phys. Chem. 1995, 99, 8033-8037.
(22) Foster, R. Organic Charge-Transfer Complexes; Academic Press:
London, U.K., 1969; p 67-72.
(23) Kavarnos, G. J.; Turro, N. J. Chem. ReV. 1986, 86, 401-449 (pp
422-423, Tables 9 and 11).
(24) Also see: (a) Mizuno, K.; Pac, C.; Sakurai, H. J. Chem. Soc., Chem.
Commun. 1975, 553. (b) Yasuda, M.; Pac, C.; Sakurai, H. J. Chem. Soc.,
Perkin Trans. 1 1981, 746-750.
(25) A comprehensive study of complex formation and charge-transfer
bands of (substituted) naphthalene(s) with tetracyanoethene has been
published: Frey, J. E.; Andrews, A. M.; Combs, S. D.; Edens, S. P.; Puckett,
J. J.; Seagle, R. E.; Torreano, L. A. J. Org. Chem. 1992, 57, 6460-6466.
(26) For an earlier example of this technique, see: Martens, F. M.;
Verhoeven, J. W.; De Boer, Th. J. Tetrahedron Lett. 1979, 2919-2920.
(27) (a) For an introduction to Rehm-Weller kinetics, see: Klessinger,
M.; Michl, J. Excited States and Photochemistry of Organic Molecules;
VCH Publishers: New York, 1995; p 285. (b) For the quenching of singlet
excited naphthalene by DCB in acetonitrile, a k-value of 12 × 1010 L/mol
s has been reported,27c supporting our assumption of diffusion-controlled
quenching. (c) Pac, C.; Nakasone, A.; Sakurai, H. J. Am. Chem. Soc. 1977,
99, 5806-5808. (d) Singlet excited naphthalene is quenched by 1,2-
dicyanobenzene, a weaker electron acceptor than DCB, and 9-cyanoan-
thracene in acetonitrile at room temperature with a diffusion-controlled rate
(k ) 1.8 × 1010 L/mol s): Tsuchida, A.; Tsujii, Y.; Ito, S.; Yamamoto,
M.; Wada, Y. J. Phys. Chem. 1989, 93, 1244-1248.
1). The quantum yield increased by a factor of 1.6, and the
ratio of 1-cyano- to 2-cyano-derivative dropped well below the
average value in the absence of 1,3,5-tri-tert-butylbenzene (6.31
versus 7.57) and approached the value obtained in the electro-
chemical experiments (5.55). These data support the hypothesis
that part of the naphthalene radical cations are created via
oxidation by 1,3,5-tri-tert-butylbenzene radical cation, and
therefore as free ions. For reaction with free ions the 1-CN-
to 2-CN-C10L7 ratio is lower. The higher quantum yield (Table
1, entry 7) is due to the reduced importance of energy-wasting
back electron transfer.58
Concluding Remarks
The present study shows: (1) the usefulness of the concept
of concentration-dependent IEs in the study of reaction mech-
anisms, (2) the necessity for adaptation of the proposed
mechanism for the photocyanation of naphthalene on the basis
of the observed concentration-dependent IE with variation of
the cyanide concentration, and (3) the (to the best of our
knowledge) first two examples of concentration-dependent IEs
in a photochemical reaction proceeding via electron transfer:
one involving energy exchange between an electronically excited
molecule and its ground-state isotopologue (eq 8) and the other
involving electron transfer within a ground-state ion pair (eq
11). Concentration-dependent IEs are therefore not limited to
photochemical reactions, but can be found in any reaction in
which intermediates have the possibility to transfer reactivity
to an isotopologue, before leading to product(s).
Acknowledgment. Use of the services and facilities of the
Dutch National SON Expertise Center CAOS/CAMM is grate-
fully acknowledged. The authors thank J. van Brussel for
dedicated technical assistance and Dr. J. L. Timmermans for
computational assistance. They are grateful to Prof. J. P.
Dinnocenzo (University of Rochester, Rochester, NY) for
clarifying discussions.
References and Notes
(28) The calculated lifetimes are based on a value of the diffusion rate
constant in ACN ) 1.9 × 1010 L/mol s. See: Murov, S. L.; Carmichael, I.;
Hug, G. L. Handbook of Photochemistry; Marcel Dekker: New York, 1993;
p 208.
(1) Melander, L.; Saunders: W. H. Reaction Rates of Isotopic
Molecules; Wiley: New York, 1980.
(2) Swenton, J. S. In Isotopes in Organic Chemistry; Buncel, E., Lee,
C. C., Eds.; Elsevier: Amsterdam, 1975; Vol. 1, Chapter 5.
(3) (a) Birks, J. B. Photophysics of Aromatic Molecules;
Wiley-Interscience: London, 1970. (b) Birks, J. B., Ed.; Organic Molecular
Photophysics; Wiley-Interscience: London, 1973 (Vol. 1), 1975 (Vol. 2).
(c) Avouris, P.; Gelbart, W. M.; El-Sayed, M. A. Chem. ReV. 1977, 77,
793-833.
(4) (a) Wagner, P. J.; Truman, R. J.; Puchalski, A. E.; Wake, R. J.
Am. Chem. Soc. 1986, 108, 7727-7738. (b) Engel, P. S.; Kitamura, A.;
Keys, D. E. J. Org. Chem. 1987, 52, 5015-5021. (c) Gritsan, N. P.;
Khmelinski, I. V.; Usov, O. M. J. Am. Chem. Soc. 1991, 113, 9615-9620.
(5) Lewis, F. D.; Johnson, R. W.; Kory, D. R. J. Am. Chem. Soc. 1974,
96, 6100-6107.
(6) Kwart, H.; Benko, D. A.; Streith, J.; Harris, D. J.; Shuppiser, J. L.
J. Am. Chem. Soc. 1978, 100, 6501-6502.
(7) Hemetsberger, H.; Bra¨uer, W.; Tartler, D. Chem. Ber. 1977, 110,
1586-1593.
(8) Paquette, L. A.; Ku¨nzer, H.; Waykole, L. Tetrahedron Lett. 1986,
27, 5803-5806.
(9) De Vaal, P.; Lodder, G.; Cornelisse, J. J. Phys. Org. Chem. 1990,
3, 273-278.
(10) For a summary of mechanistic studies up to 1986, see: Konuk,
R.; Cornelisse, J.; McGlynn, S. P. J. Chem. Phys. 1986, 84, 6808-6815.
(11) Niiranen, J.; Nieminen, K.; Lemmetyinen, H. J. Photochem.
Photobiol., A. 1991, 56, 43-53.
(12) Eberson, L.; Nilsson, S. Discuss. Faraday Soc. 1968, 45, 242-
246.
(13) Nilsson, S. Acta Chem. Scand. 1973, 27, 329-335.
(14) De Jongh, R. O.; Havinga, E. Recl. TraV. Chim. Pays-Bas 1966,
85, 275-283.
(29) (a) Li, R.; Lim, E. C. J. Chem. Phys. 1972, 57, 605-612. (b)
Kanamaru, N.: Bhattacharjee, H. R.; Lim, E. C. Chem. Phys. Lett. 1974,
26, 174-179.
(30) Berlman, I. B. Handbook of Fluorescence Spectra of Aromatic
Molecules; Academic Press: New York, 1971; pp 330-331.
(31) (a) Beugelmans, R.; Le Goff, M.-T.; Pusset, J.; Roussi, G. J. Chem.
Soc., Chem. Comm. 1976, 377-378. (b) Lemmetyinen, H.; Koskikallio, J.;
Lindblad, M.; Kuzmin, M. G. Acta Chem. Scand., Ser. A 1982, 36, 391-
397. (c) Tetraethylammonium cyanide was tested as well, but problems
arose with the necessary removal of the salt before GC analysis.
(32) This method of measuring IEs is both quantitatively superior to
and significantly faster and cheaper than analysis by GC/MS.
(33) The choice of 1,3,5-tri-tert-butylbenzene was based on the condition
that it absorbs >99% of the incoming light, that its radical cation can oxidize
naphthalene (the oxidation potentials of naphthalene and 1,3,5-tri-tert-
butylbenzene are 1.60 and 2.01 V, respectively), and that the bulky
substituent will decrease the rate of back electron transfer. See: Gould, I.
R.; Farid, S. J. Phys. Chem. 1993, 97, 13067-13072.
(34) No data for ∆H of S1 could be obtained using CI or CISD
calculations, since the gradient norm could not be reduced to values smaller
than 20. This was despite the fact that the heat of formation was minimized
to the same value from various starting geometries, using various optimiza-
tion algorithms (BFGS, EF, and NLLSQ), both with and without symmetry
constraints. Force calculations performed on this geometry showed several
imaginary frequencies up to i6000 cm-1
.
(35) (a) Turro, N. J. Modern Molecular Photochemistry, Benjamin/
Cummings Publishing Co.: Menlo Park, CA, 1978; pp 189, and 292. (b)
Huebner, R. H.; Mielczarek, S. R.; Kuyatt, C. E. Chem. Phys. Lett. 1972,
16, 464-469. (c) Dick, B.; Hohlneicher, G. Chem. Phys. Lett. 1981, 84,
471-478.