Page 7 of 9
Journal of the American Chemical Society
(8) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehydrogenation of
is the concerted deprotonation/hydride abstraction pathway
(TS6, 32.6 kcal.mol-1, Scheme 9b), where again CO dissocia-
tion creates the open coordination site at ruthenium.
Alkanes and Aliphatic Groups by Pincer-Ligated Metal
Complexes, Chem. Rev. 2017, 117, 12357-12384.
(9) Benito-Garagorri, D.; Kirchner, K. Modularly Designed Transition
Metal PNP and PCP Pincer Complexes based on
Aminophosphines: Synthesis and Catalytic Applications, Acc.
Chem. Res. 2008, 41, 201-213.
(10) Gunanathan, C.; Milstein, D. Metal-Ligand Cooperation by
Aromatization-Dearomatization: A New Paradigm in Bond
Activation and "Green" Catalysis, Acc. Chem. Res. 2011, 44, 588-
602.
(11) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Facile
Conversion of Alcohols into Esters and Dihydrogen Catalyzed by
New Ruthenium Complexes, J. Am. Chem. Soc. 2005, 127, 10840-
10841.
(12) Ben-Ari, E.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Metal-
Ligand Cooperation in C-H and H2 Activation by an Electron-
Rich PNP Ir(I) System: Facile Ligand Dearomatization-
Aromatization as Key Steps, J. Am. Chem. Soc. 2006, 128, 15390-
15391.
(13) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient
homogeneous catalytic hydrogenation of esters to alcohols,
Angew. Chem., Int. Ed. 2006, 45, 1113-1115.
1
2
3
4
5
6
7
8
In summary, we have disclosed a new coordination mode for
the MLC of pincer complexes through dearomatization/aroma-
tization. A series of pyridine-based PCP-Ru complexes were
synthesized and characterized. Interestingly, DFT calculations
of quaternized pyridine-based PCP-ruthenium complexes indi-
cate the carbenoid character of the ipso-carbon. We were able
to observe the dearomatization of a quaternized pyridine-based
PCP-Ru complex by direct deprotonation. NBO calculations on
the dearomatized complex show the absence of carbenoid char-
acter at the ipso-position. Importantly, the dearomatized PCP-
Ru complex reacts with hydrogen or alcohols to generate the
aromatized ruthenium hydride complex via MLC. This concep-
tually new MLC mode provides an alternative choice for the
development of acceptorless dehydrogenation reactions.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
(14) Gunanathan, C.; Milstein, D. Applications of Acceptorless
Dehydrogenation and Related Transformations in Chemical
Synthesis, Science 2013, 341, 249.
(15) Gunanathan, C.; Milstein, D. Bond Activation and Catalysis by
Ruthenium Pincer Complexes, Chem. Rev. 2014, 114, 12024-
12087.
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental details of synthetic procedures, NMR spectra, X-ray
data, and computational details (PDF)
Crystallographic data for 2a, 2b, 3a, 4a, 5b, 8b (CIF)
(16) Prokopchuk, D. E.; Tsui, B. T. H.; Lough, A. J.; Morris, R. H.
Intramolecular C-H/O-H Bond Cleavage with Water and Alcohol
AUTHOR INFORMATION
Using
a Phosphine-Free Ruthenium Carbene NCN Pincer
Complex, Chem. Eur. J. 2014, 20, 16960-16968.
Corresponding Author
(17) Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D. Ester
hydrogenation catalyzed by Ru-CNN pincer complexes, Chem.
Commun. 2011, 47, 8349-8351.
*david.milstein@weizmann.ac.il
Author contributions
§Shan Tang and Niklas von Wolff contributed equally.
(18) Fogler, E.; Garg, J. A.; Hu, P.; Leitus, G.; Shimon, L. J. W.;
Milstein, D. System with Potential Dual Modes of Metal–Ligand
Cooperation: Highly Catalytically Active Pyridine-Based PNNH–
Ru Pincer Complexes, Chem. Eur. J. 2014, 20, 15727-15731.
(19) Filonenko, G. A.; Cosimi, E.; Lefort, L.; Conley, M. P.; Copéret,
C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. Lutidine-Derived Ru-
CNC Hydrogenation Pincer Catalysts with Versatile Coordination
Properties, ACS Catal. 2014, 4, 2667-2671.
(20) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D.
Direct Hydrogenation of Amides to Alcohols and Amines under
Mild Conditions, J. Am. Chem. Soc. 2010, 132, 16756-16758.
(21) Li, H.; Zheng, B.; Huang, K.-W. A new class of PN3-pincer
ligands for metal–ligand cooperative catalysis, Coordin. Chem.
Rev. 2015, 293-294, 116-138.
(22) Ashkenazi, N.; Vigalok, A.; Parthiban, S.; Ben-David, Y.; Shimon,
L. J. W.; Martin, J. M. L.; Milstein, D. Discovery of the First
Metallaquinone, J. Am. Chem. Soc. 2000, 122, 8797-8798.
(23) Dauth, A.; Gellrich, U.; Diskin-Posner, Y.; Ben-David, Y.;
Milstein, D. The Ferraquinone–Ferrahydroquinone Couple:
Combining Quinonic and Metal-Based Reactivity, J. Am. Chem.
Soc. 2017, 139, 2799-2807.
(24) Kosanovich, A. J.; Komatsu, C. H.; Bhuvanesh, N.; Pérez, L. M.;
Ozerov, O. V. Dearomatization of the PCP Pincer Ligand in a ReV
Oxo Complex, Chem. Eur. J. 2018, 24, 13754-13757.
(25) Bordwell, F. G. Equilibrium acidities in dimethyl sulfoxide
solution, Acc. Chem. Res. 1988, 21, 456-463.
(26) Weisman, A.; Gozin, M.; Kraatz, H.-B.; Milstein, D. Rhodium and
Palladium Complexes of a 3,5-Lutidine-Based Phosphine Ligand,
Inorg. Chem. 1996, 35, 1792-1797.
(27) van der Boom, M. E.; Iron, M. A.; Atasoylu, O.; Shimon, L. J. W.;
Rozenberg, H.; Ben-David, Y.; Konstantinovski, L.; Martin, J. M.
L.; Milstein, D. sp3 C–H and sp2 C–H agostic ruthenium
complexes: a combined experimental and theoretical study, Inorg.
Chim. Acta 2004, 357, 1854-1864.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This research was supported by the European Research Council
(ERC AdG 692775). D. M. holds the Israel Matz Professorial Chair
of Organic Chemistry. S.T. is thankful to the Israel Planning and
Budgeting Committee (PBC) for a postdoctoral fellowship. N.v.W.
is supported by the Foreign Postdoctoral Fellowship Program of the
Israel Academy of Sciences and Humanities.
REFERENCES
(1) Ikariya, T.; Blacker, A. J. Asymmetric Transfer Hydrogenation of
Ketones with Bifunctional Transition Metal-Based Molecular
Catalysts, Acc. Chem. Res. 2007, 40, 1300-1308.
(2) Grützmacher, H. Cooperating Ligands in Catalysis, Angew. Chem.
Int. Ed. 2008, 47, 1814-1818.
(3) Khusnutdinova, J. R.; Milstein, D. Metal-Ligand Cooperation,
Angew. Chem., Int. Ed. 2015, 54, 12236-12273.
(4) Morales-Morales, D.; Jensen, C. M. The chemistry of pincer
compounds; 1st ed.; Elsevier: Amsterdam ; Boston, 2007.
(5) Koten, G. v.; Milstein, D. Organometallic pincer chemistry;
Springer: Berlin ; New York, 2013.
(6) van der Boom, M. E.; Milstein, D. Cyclometalated Phosphine-
Based Pincer Complexes:ꢁ Mechanistic Insight in Catalysis,
Coordination, and Bond Activation, Chem. Rev. 2003, 103, 1759-
1792.
(7) Selander, N.; Szabó, K. J. Catalysis by Palladium Pincer Complexes,
Chem. Rev. 2011, 111, 2048-2076.
ACS Paragon Plus Environment