1
408
F.-Z. Bao et al. / Tetrahedron Letters 54 (2013) 1405–1408
In order to gain insights into the novel domino reaction and
confirm the proposed mechanism, the reaction between 1,7-diphe-
Chem. Rev. 1996, 96, 289–306; (d) Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan,
G. C. Chem. Rev. 2005, 105, 1001–1020; (e) Berkessel, A.; Roland, K.; Neudorfl, J.
M. Org. Lett. 2006, 8, 4195–4198; (f) Jia, Y.; Mao, Z.; Wang, R. Tetrahedron:
Asymmetry 2011, 22, 2018–2023; (g) Khoumeri, O.; Montana, M.; Terme, T.;
Vanelle, P. Tetrahedron Lett. 2012, 53, 2410–2413; (h) Hong, B. C.; Nimje, R. Y.;
Lin, C. W.; Liao, J. H. Org. Lett. 2011, 13, 1278–1281.
For the recent domino reactions: (a) Parsons, P. J.; Penkett, C. S.; Shell, A. J.
Chem. Rev. 1996, 96, 195–206; (b) Tietze, L. F. Chem. Rev. 1996, 96, 115–136; (c)
Schneider, C.; Reese, O. Angew. Chem., Int. Ed. 2000, 39, 2948–2950; (d) Mauro,
M.; Søren, B.; Aitor, L.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 5475–5479; (e)
Sunden, H.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Cordova, A. Chemistry 2007, 13,
1
7
nylhepta-4,6-dien-3-one and cinnamaldehyde was investigated
as shown in Scheme 4. The 1,7-diphenylhepta-4,6-dien-3-one
reacted with cinnamaldehyde smoothly to afford the tandem
inter-Michael–intra-Michael addition product in 68% yield under
the optimal reaction conditions. That proved the proposed mecha-
nism of the novel domino reaction is reasonable.
2.
In conclusion, we have developed a novel synthetic method to
construct the polysubstituted 4-oxocyclohexanecarbaldehyde
derivatives via a pyrrolidine-mediated novel organic catalyzed
domino cyclization reaction. The reaction consists of three consec-
utive reactions that include an aldol condensation reaction and a
tandem inter-Michael–intra-Michael addition reaction in one pot
with moderate to good yields. Further study on its asymmetric ver-
sion and applications of this methodology toward total synthesis of
natural products as well as pharmaceutical agents are in progress
in our laboratory.
5
74–581; (f) Padwa, A.; Bur, S. K. Tetrahedron 2007, 63, 5341–5378; (g)
Ishikawa, T.; Kudo, K.; Kuroyabu, K.; Uchida, S.; Kudoh, T.; Saito, S. J. Org. Chem.
008, 73, 7498–7508; (h) Ramachandran, R.; Jayanthi, S.; Jeong, Y. T.
2
Tetrahedron 2012, 68, 363–369.
3
.
For reviews, see: (a) Collu, F.; Bonsignore, L.; Casu, M.; Floris, C.; Gertsch, J.;
Cottiglia, F. Bioorg. Med. Chem. Lett. 2008, 18, 1559–1562; (b) Das, U.; Doroudi,
A.; Das, S.; Bandy, B.; Balzarini, J.; De Clercq, E.; Dimmock, J. R. Bioorg. Med.
Chem. 2008, 16, 6261–6268; (c) Dimmock, J. R.; Kandepu, N. M.; Nazarali, A. J.;
Motaganahalli, N. L.; Kowalchuk, T. P.; Pugazhenthi, U.; Prisciak, J. S.; Quail, J.
W.; Allen, T. M.; LeClerc, R.; Santos, C. L.; De Clercq, E.; Balzarini, J. J. Med. Chem.
2000, 43, 3933–3940.
4.
.
Seo, S. W.; Kim, S. G. Tetrahedron Lett. 2012, 53, 2809–2812.
Davies, S. G.; Lee, J. A.; Roberts, P. M.; Thomson, J. E.; West, C. J. Tetrahedron
5
2
012, 68, 4302–4319.
Acknowledgments
6
7
.
.
Rao, H. S.; Senthilkumar, S. P. J. Org. Chem. 2004, 69, 2591–2594.
(a) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew. Chem., Int. Ed. 2009, 48,
3
699–3702; (b) Liu, J.; Lin, S.; Ding, H.; Wei, Y.; Liang, F. Tetrahedron Lett. 2010,
This research work was financially supported by the Program for
Changjiang Scholars and Innovative Research Team in University
5
1, 6349–6352.
8
.
.
(a) Ye, L.-W.; Han, X.; Sun, X.-L.; Tang, Y. Tetrahedron 2008, 64, 8149–8154; (b)
Chen, P.-Y.; Chen, H.-M.; Chiang, M. Y.; Wang, Y.-F.; Li, S.-R.; Wang, T.-P.; Wang,
E.-C. Tetrahedron 2012, 68, 3030–3036.
Kinoshita, H.; Osamura, T.; Mizuno, K.; Kinoshita, S.; Iwamura, T.; Watanabe, S.;
Kataoka, T.; Muraoka, O.; Tanabe, G. Chemistry 2006, 12, 3896–3904.
(
PCSIRT-IRT1193), the Project Founded by the Priority Academic
Program Development of Jiangsu Higher Education Institutions
PAPD) and the Scaling Project for Innovation Scholars, Natural
9
(
Science Foundation of Jiangsu Province, China (BK2008039), and
the Cultivation Found of the Key Scientific and Technical Innovation
Project, Ministry of Education of China (No. 707033).
10. (a) Hayashi, Y.; Toyoshima, M.; Gotoh, H.; Ishikawa, H. Org. Lett. 2009, 11, 45–
8; (b) Bermudez, E.; Ventura, O. N.; Saenz Mendez, P. J. Phys. Chem. A 2010,
14, 13086–13092; (c) Peña, J.; Antón, A. B.; Moro, R. F.; Marcos, I. S.; Garrido,
4
1
N. M.; Díez, D. Tetrahedron 2011, 67, 8331–8337.
1
1. (a) Marigo, M.; Bertelsen, S.; Landa, A.; Jorgensen, K. A. J. Am. Chem. Soc. 2006,
128, 5475–5479; (b) Das, B. C.; Mohapatra, S.; Campbell, P. D.; Nayak, S.;
Mahalingam, S. M.; Evans, T. Tetrahedron Lett. 2010, 51, 2567–2570.
2. Wang, W.; Mei, Y.; Li, H.; Wang, J. Org. Lett. 2005, 7, 601–604.
3. Nair, V.; Paul, R. R.; Padmaja, D. V. M.; Aiswarya, N.; Sinu, C. R.; Jose, A.
Tetrahedron 2011, 67, 9885–9889.
Supplementary data
1
1
1
1
4. Lee, A. S.-Y.; Lin, L.-S.; Chang, Y.-T. Tetrahedron 2012, 68, 3915–3919.
5. Muthusaravanan, S.; Perumal, S.; Almansour, A. I. Tetrahedron Lett. 2012, 53,
2.125. These data include MOL files and InChiKeys of the most
important compounds described in this article.
1144–1148.
1
6. (a) Halland, N.; Aburel, P. S.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2004, 43,
References and notes
1272–1277; (b) Hong, B. C.; Nimje, R. Y.; Sadani, A. A.; Liao, J. H. Org. Lett. 2008,
1
0, 2345–2348; (c) Ling, J. B.; Su, Y.; Zhu, H. L.; Wang, G. Y.; Xu, P. F. Org. Lett.
2012, 14, 1090–1093.
17. Goksu, S.; Celik, H.; Secen, H. Turk. J. Chem. 2003, 27, 31–34.
1
.
For reviews, see: (a) Schreiber, S. L. Science 2000, 287, 1964–1969; (b) Parsons,
P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195–206; (c) Malacria, M.