Angewandte Chemie International Edition
10.1002/anie.202102343
COMMUNICATION
eq., 3h). B) ESI-MS analysis of the reaction intermediates and products (12: Mcal.
Keywords: nanobody • genetic code expansion • penicillin G
=
1232.52 Da).
acylase • thiol bioconjugation • regioselective labeling
[1]
[2]
[3]
[4]
D. Fass, C. Thorpe, Chem Rev 2018, 118, 1169-1198.
Together, these results show that the latent thiol group in 1
S. B. Gunnoo, A. Madder, Chembiochem 2016, 17, 529-553.
S. B. Kent, Chem Soc Rev 2009, 38, 338-351.
can be used to efficiently introduce novel crosslinks into proteins.
Notably, the formed thioether crosslink is of minimal atom
economy, also due to the small size of the Hcy side chain. The
latter contrasts to the mostly long and bulky side chains
incorporated by the genetic code expansion technology for
related purposes.[25]
a) S. Virdee, P. B. Kapadnis, T. Elliott, K. Lang, J. Madrzak, D. P. Nguyen,
L. Riechmann, J. W. Chin, J Am Chem Soc 2011, 133, 10708-10711; b)
X. Li, T. Fekner, J. J. Ottesen, M. K. Chan, Angew Chem Int Ed Engl
2009, 48, 9184-9187; c) J. R. Frost, N. T. Jacob, L. J. Papa, A. E. Owens,
R. Fasan, ACS Chem Biol 2015, 10, 1805-1816; d) E. Brustad, M. L.
Bushey, A. Brock, J. Chittuluru, P. G. Schultz, Bioorg Med Chem Lett
2
008, 18, 6004-6006; e) T. Liu, Y. Wang, X. Luo, J. Li, S. A. Reed, H.
Xiao, T. S. Young, P. G. Schultz, Proc Natl Acad Sci U S A 2016, 113,
910-5915; f) M. Koh, H. Y. Cho, C. Yu, S. Choi, K. B. Lee, P. G. Schultz,
Conclusions
5
Bioconjug Chem 2019, 30, 2102-2105.
[5]
a) R. Uprety, J. Luo, J. Liu, Y. Naro, S. Samanta, A. Deiters,
Chembiochem 2014, 15, 1793-1799; b) N. Wu, A. Deiters, T. A. Cropp,
D. King, P. G. Schultz, J Am Chem Soc 2004, 126, 14306-14307; c) D.
P. Nguyen, M. Mahesh, S. J. Elsasser, S. M. Hancock, C. Uttamapinant,
J. W. Chin, J Am Chem Soc 2014, 136, 2240-2243; d) D. P. Nguyen, T.
Elliott, M. Holt, T. W. Muir, J. W. Chin, J Am Chem Soc 2011, 133, 11418-
We have reported the genetic encoding of the novel non-
canonical amino acid HcP (1) with a latent thiol group and its
enzymatic deprotection to Hcy. The PGA-mediated deprotection
was found to be surprisingly rapid and efficient at sterically well-
accessible positions in unstructured regions, but was poor or
impossible on flat surfaces of stably folded globular proteins.
Importantly, the deprotection is performed under mild,
physiological, non-denaturing and non-destructive conditions to
the protein of interest, representing a significant advancement in
terms of preparative utility over previously reported chemical or
photochemical deprotection schemes of latent thiol or selenol
groups. We have demonstrated the potential of the latent thiol
group in several novel approaches of selective chemical
modification of proteins, thereby significantly expanding the scope
of thiol bioconjugation. The variety of these approaches reflect the
versatility of thiol group chemistry. Protein thiol bioconjugation is
a classical and well-established technique, and is still highly
attractive due to its simplicity, chemoselectivity, efficiency and
wide-spread use. The synthesis of the required unnatural amino
acid 1 is easy to perform. The requirement for bioorthogonal
reactions is circumvented in our chemical modification schemes.
Bioorthogonal reactions require more sophisticated reagents of
more restricted availability, in particular for dual labeling,[ and
are of more restricted applicability in many regards, for example
as caused by the interference of cyclooctynes with free
cysteines.[ Our reported examples include a) two different
routes to regioselective and consecutive dual labeling of cysteine
and homocysteine (Hcy) as two quasi-orthogonal thiol groups, b)
selective thiol conjugation under preservation of disulfide bonds
that are otherwise sensitive to reducing conditions, and c) a
protein crosslinking strategy to introduce stable thioether bridges.
These protocols would not have been possible without the latent
thiol group. We believe that they present powerful new tools for
the protein chemist and biochemist and that the novel latent thiol
group will enable many other new and unique applications.
1
1421; e) J. Liu, F. Zheng, R. Cheng, S. Li, S. Rozovsky, Q. Wang, L.
Wang, J Am Chem Soc 2018, 140, 8807-8816; f) W. Ren, A. Ji, H. W. Ai,
Am Chem Soc 2015, 137, 2155-2158; g) R. Rakauskaite, G.
J
Urbanaviciute, A. Ruksenaite, Z. Liutkeviciute, R. Juskenas, V.
Masevicius, S. Klimasauskas, Chem Commun (Camb) 2015, 51, 8245-
8248; h) K. Yang, G. Li, P. Gong, W. Gui, L. Yuan, Z. Zhuang,
Chembiochem 2016, 17, 995-998.
[
[
[
6]
7]
8]
L. Johansson, C. Chen, J. O. Thorell, A. Fredriksson, S. Stone-Elander,
G. Gafvelin, E. S. Arner, Nat Methods 2004, 1, 61-66.
C. E. Hoyle, C. N. Bowman, Angew Chem Int Ed Engl 2010, 49, 1540-
1
573.
J. K. Böcker, W. Dorner, H. D. Mootz, Chem Commun (Camb) 2019, 55,
287-1290.
C. C. Liu, P. G. Schultz, Annu Rev Biochem 2010, 79, 413-444.
1
[9]
[10] K. Srirangan, V. Orr, L. Akawi, A. Westbrook, M. Moo-Young, C. P. Chou,
Biotechnol Adv 2013, 31, 1319-1332.
[
11] D. Kadereit, H. Waldmann, Chem Rev 2001, 101, 3367-3396.
12] M. Royo, J. Alsina, E. Giralt, U. Slomcyznska, F. Albericio, J. Chem. Soc.,
Perkin Trans. 1 1995, 1095-1102.
[
[
13] a) M. Reille-Seroussi, S. V. Mayer, W. Dorner, K. Lang, H. D. Mootz,
Chem Commun (Camb) 2019, 55, 4793-4796; b) M. Cigler, T. G. Muller,
D. Horn-Ghetko, M. K. von Wrisberg, M. Fottner, R. S. Goody, A. Itzen,
M. P. Muller, K. Lang, Angew Chem Int Ed Engl 2017, 56, 15737-15741.
18]
26]
[14] T. Cheng, M. Chen, H. Zheng, J. Wang, S. Yang, W. Jiang, Protein Expr
Purif 2006, 46, 107-113.
[
[
[
15] H. J. Duggleby, S. P. Tolley, C. P. Hill, E. J. Dodson, G. Dodson, P. C.
Moody, Nature 1995, 373, 264-268.
16] J. Tulla-Puche, M. Gongora-Benitez, N. Bayo-Puxan, A. M. Francesch,
C. Cuevas, F. Albericio, Angew Chem Int Ed Engl 2013, 52, 5726-5730.
17] a) Q. C. Wang, J. Fei, D. F. Cui, S. G. Zhu, L. G. Xu, Biopolymers 1986,
25 Suppl, S109-114; b) L. Zakova, D. Zyka, J. Jezek, I. Hanclova, M.
Sanda, A. M. Brzozowski, J. Jiracek, J Pept Sci 2007, 13, 334-341.
[18] a) E. M. Brustad, E. A. Lemke, P. G. Schultz, A. A. Deniz, J Am Chem
Soc 2008, 130, 17664-17665; b) B. Wu, Z. Wang, Y. Huang, W. R. Liu,
Chembiochem 2012, 13, 1405-1408; c) I. Nikic, T. Plass, O. Schraidt, J.
Szymanski, J. A. Briggs, C. Schultz, E. A. Lemke, Angew Chem Int Ed
Engl 2014; d) A. Sachdeva, K. Wang, T. Elliott, J. W. Chin, J Am Chem
Soc 2014, 136, 7785-7788; eL. J. Kost, H. D. Mootz, Chembiochem 2018,
Acknowledgements
19, 177-184.
We thank Kathrin Lang and Sheng Yang for providing plasmids
for the PylRS/tRNA system and PGA expression, respectively.
We gratefully acknowledge funding of this work by the Deutsche
Forschungsgemeinschaft (DFG; grants MO1073/8-1 and
SFB858/B14 to H. D. M.).
[19] a) J. Alfermann, X. Sun, F. Mayerthaler, T. E. Morrell, E. Dehling, G.
Volkmann, T. Komatsuzaki, H. Yang, H. D. Mootz, Nat Chem Biol 2017,
13, 1009-1015; b) F. Mayerthaler, A.-L. Feldberg, J. Alfermann, X. Sun,
[20] R. H. Lambalot, A. M. Gehring, R. S. Flugel, P. Zuber, M. LaCelle, M. A.
Marahiel, R. Reid, C. Khosla, C. T. Walsh, Chem Biol 1996, 3, 923-936.
7
This article is protected by copyright. All rights reserved.