152
Y.-M. Pu et al. / Tetrahedron Letters 47 (2006) 149–153
organic reactions is rare.18 Given consideration with the
better solubilities of 4b in many organic solvents than
5. Brooks, D. W.; Basha, A.; Kerdesky, F. A. J.; Holms, J.
A.; Ratajcyk, J. D.; Bhatia, P.; Moore, J. L.; Martin, J. G.;
Schmidt, S. P.; Albert, D. H.; Dyer, R. D.; Young, P.;
Carter, G. W. Bioorg. Med. Chem. Lett. 1992, 2, 1357–
4
4
a, 4b was the catalyst of choice for our purposes. When
b was subjected to the model reaction, we were pleased
1
360.
to find that 3a was produced in excellent yield (Table 2,
entry 1).
6
7
. Matsuda, T.; Aoki, T.; Koshi, T.; Ohkuchi, M.; Shigyo,
H. Biorg. Med. Chem. Lett. 2001, 11, 2373–2375.
. (a) Harris, R. R.; Black, L.; Surapaneni, S.; Kolasa, T.;
Majest, S.; Namovic, M. T.; Grayson, G.; Komater, V.;
Wilcox, D.; King, L.; Marsh, K.; Jarvis, M. F.; Nuss, M.;
Nellans, H.; Prusser, L.; Reinhart, G. A.; Cox, B.;
Jacobson, P.; Stewart, A.; Coghlan, M.; Carter, G.; Bell,
R. L. J. Pharmacol. Exp. Ther. 2004, 311, 904–912; (b) Li,
C. S.; Brideau, C.; Chan, C. C.; Savoie, C.; Claveau, D.;
Charleson, S.; Gordon, R.; Greig, G.; Gauthier, J. Y.;
Lau, C. K.; Riendeau, D.; Therien, M.; Wong, E.; Prasit,
P. Bioorg. Med. Chem. Lett. 2003, 13, 597–600.
With the optimal reaction conditions and the catalyst in
hand, we began to examine C–N bond forming reactions
involving functionalized aryl bromides or iodides and
1
9
pyridazinone derivatives (Table 2). There was no sig-
nificant difference in yield in all reactions surveyed under
the reaction conditions. A variety of functional groups
including cyano, methoxy, bromo, and hydroxyl on
the aryl halide component are well tolerated. Also, no
significant electronic or steric effects were observed for
para- and meta-substituted aryl halides. It should be
noted that this Cu-catalyzed reaction is sensitive to the
presence of exogenous oxygen to some extent. The yield
was found to be ꢁ10% lower when the reaction was per-
formed under air rather than under nitrogen (Table 2,
8
. Wolter, M.; Klapars, A.; Buchwald, S. Org. Lett. 2001, 3,
3
803–3805.
9
. (a) Huang, X.; Anderson, K. M.; Zim, D.; Jiang, L.;
Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
6653–6655; (b) Wolfe, J. P.; Buchwald, S. L. J. Org. Chem.
1997, 62, 6066–6068; (c) Shakespeare, W. C. Tetrahedron
Lett. 1999, 40, 2035–2038; (d) Yin, J.; Buchwald, S. L.
Org. Lett. 2000, 2, 1101–1104; (e) Hartwig, J. F.; Kawat-
sura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-
Roman, L. M. J. Org. Chem. 1999, 64, 5575–5580; (f)
Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860; (g)
Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805–818.
0
entry 1 ).
In conclusion, we have developed an effective cross-cou-
pling protocol using the structurally well-defined copper
(
II) catalyst 4b for the N-arylation of pyridazinones,
complimentary to Pd-catalyzed C–N bond forming reac-
tions. The reaction proceeds at ꢁ100 ꢁC for aryl iodides
and ꢁ140 ꢁC for aryl bromides. Many functional groups
in aryl halide are well tolerated. Extension of this proto-
col to include other nitrogen nucleophiles is in progress.
1
0. For the recent review, (a) Ley, S. V.; Thomas, A. W.
Angew. Chem., Int. Ed. 2003, 42, 5400–5449; (b) Kunz, K.;
Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439; (c)
Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev.
2
004, 248, 2337–2364.
1. (a) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793–
96; (b) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org.
1
1
7
Acknowledgement
Lett. 2004, 4, 581–584.
2. Yamada, K.; Kurokawa, T.; Tokuyama, H.; Fukuyama,
T. J. Am. Chem. Soc. 2003, 125, 6630–6631.
We are grateful to Dr. Zhe Wang, safety evaluation lab.
for DSC data of 4a and 4b.
13. Han, C.; Shen, R.; Su, S.; Porco, J. A. Org. Lett. 2004, 6,
7–30.
2
1
4. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem.
Soc. 1998, 120, 12459–12467.
Supplementary data
1
5. (a) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org.
Lett. 2001, 3, 4315–4317; (b) Deng, W.; Wang, Y.; Zou,
Y.; Liu, L.; Guo, Q. Tetrahedron Lett. 2004, 45, 2311–
2315; (c) Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583–
2586.
Electronic supplementary data: a complete description
of experimental details and product characterization.
1
1
6. Bevan, J. A.; Graddon, D. P.; McConnell, J. F. Nature
1
963, 199, 373.
7. (a) Grosjean-Cournoyer, M.-C.; Gouot, J.-M. WO
2
1
005077181, 2005; (b) Zhang, A.; Shen, L.; Jiang, Z. CN
325625, 2001; (c) Murschall, U.; Kern, U.; Crass, G. WO
References and notes
20020057349, 2002.
1
8. Shimada, A. JP 03215448, 1991.
1
. (a) Gabriel, S.; Colman, J. Chem. Ber. 1899, 32, 398; (b)
Maxwell, G. M.; Ness, D.; Rencis, V. Eur. J. Pharmacol.
981, 69, 471–476; (c) Oates, H. F.; Stoker, L. M. Clin.
19. A typical experimental procedure: To a resealable pressure
tube were charged copper catalyst 4b (87.1 mg, 0.20
mmol), K CO powder (828 mg, 6.0 mmol), aryl halide
2 3
1
Exp. Pharmacol. Physiol. 1981, 8, 133–139; (d) Worms, P.;
Gueudet, C.; Biziere, K. Life Sci. 1986, 39, 2199–2208.
. Nomoto, Y.; Takai, H.; Ohno, T.; Nagashima, K.; Yao,
K.; Yamada, K.; Kubo, K.; Ichimura, M.; Mihara, A.;
Kase, H. J. Med. Chem. 1996, 39, 297–303.
. Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini,
G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano,
S. J. Med. Chem. 2001, 44, 2118–2132.
(4.0 mmol), pyridazinone derivative (6.0 mmol), and
DMF (5.0 mL). The tube was evacuated, and back-
filled with nitrogen. The reaction mixture was heated to
100 ꢁC (aryl iodide) or 140 ꢁC (aryl bromide), and stirred
for 20 h. The resulting mixture was cooled to room
2
3
4
temperature, diluted with CH
2 2
Cl , washed with concd
NH OH solution, and 25% brine. The organic was
4
filtered through a pad of Celite, and the filtrate concen-
trated to dryness. Purification of the crude product by
flash chromatography on silica gel gave the desired
. Sayed, G. H.; Hamed, A. A.; Meligi, G. A.; Boraie, W. E.;
Shafik, M. Molecules 2003, 8, 322–332.