ChemComm
Communication
within these functional micelles to be 0.46 and 0.70 for BCz
2- and BCz 3-loaded PBI micelles, respectively (for details see
ESI†). Because this value is too large for BCz 3-loaded micelles,
white colour could not be realized, pinpointing the challenge in
the supramolecular design.
In summary, we have demonstrated FRET within dye
micelles by loading biscarbazoles as energy donors into the
hydrophobic interior of PBI micelles that act as acceptors. Our
white-light emitting, water-soluble BCz 2-loaded PBI micelles are
unique because they represent the smallest imaginable bulb-
shaped white-light emitting nano luminary systems accom-
plished from only two fluorescence colour components, i.e. cyan
blue and red.
Financial support from the Deutsche Forschungsgemeinschaft
DFG (grant project: WU 317/11) is gratefully acknowledged.
Fig. 3 (a) Photograph of BCz 2-loaded PBI micelles in aqueous solution under a
UV lamp. (b) CIE 1931 chromaticity diagram. The circles indicate the colour
coordinates for the cyan blue fluorescence of biscarbazole excimers (0.21, 0.27),
the red fluorescence of pure perylene micelles (0.65, 0.35) and white fluores-
cence coordinates (0.34, 0.30) for the functional micelles. (c) Fluorescence spectra
of BCz 2-loaded PBI dye micelles in aqueous solution at the excitation wave-
Notes and references
1 A. Kaeser and A. P. H. J. Schenning, Adv. Mater., 2010, 22, 2985;
R. Bhosale, S. Bhosale, G. Bollot, V. Gorteau, M. D. Julliard,
S. Litvinchuk, J. Mareda, S. Matile, T. Miyatake, F. Mora, A. Perez-
Velasco, N. Sakai, A. L. Sisson, H. Tanaka and D. H. Tran, Bull.
Chem. Soc. Jpn., 2007, 80, 1044.
lengths from 200 nm to 550 nm in a 5 nm-step. [PBI 4] = 0.17 mg mLÀ1
.
2 J.-H. Ryu, D.-J. Hong and M. Lee, Chem. Commun., 2008, 1043;
F. Biedermann, E. Elmalem, I. Ghosh, W. M. Nau and O. A.
Scherman, Angew. Chem., Int. Ed., 2012, 51, 7739.
Moreover, when the interior biscarbazoles of PBI micelles were
excited at the short wavelength of 250–330 nm, the characteri-
stic red broad fluorescence band of PBI dyes14–16 was observed
(Fig. 3c), suggesting that FRET occurred from excited biscarbazoles
to PBI dyes within the functional micelles. Most interestingly,
white fluorescence was observed with CIE chromaticity coordi-
nates (0.34, 0.30) for BCz-2 loaded PBI micelles under a UV
lamp (Fig. 3a and b). This interesting phenomenon is due to
partial energy transfer within functional micelles that leads to the
emission of two fluorescence colours, i.e. cyan-blue fluorescence
(CIE coordinates: 0.21, 0.27) from biscarbazole donors and red
fluorescence (CIE coordinates: 0.65, 0.35) from PBI dyes. The two
fluorescence colours are complementary (Fig. 3b), and thus their
combination leads to white fluorescence. Recently, it has been
reported that white light can be achieved by tuning the contribu-
tions of three luminescent colours, i.e. blue, green, and red,7,9,12,14
or two luminescent colours, i.e. blue and orange.8 Our present
example relates to the second case, since white-light emission is
3 For recent reviews, see: K. T. Kamtekar, A. P. Monkman and
¨
M. R. Bryce, Adv. Mater., 2010, 22, 572; M. C. Gather, A. Kohnen
and K. Meerholz, Adv. Mater., 2011, 23, 233.
4 G. Wyszecki and W. S. Stiles, Colour Science - Concepts and Methods,
Quantitative Data and Formulae, Wiley-Interscience, New York, 2000.
5 C. Giansante, C. Schafer, G. Raffy and A. Del Guerzo, J. Phys. Chem.
C, 2012, 116, 21706.
6 R. J. Abbel, R. van der Weegen, E. W. Meijer and A. P. H. J.
Schenning, Chem. Commun., 2009, 1697.
7 R. Wang, J. Peng, F. Qiu, Y. Yang and Z. Xie, Chem. Commun., 2009,
6723.
8 S. Park, J. E. Kwon, S. H. Kim, J. Seo, K. Chung, S. Y. Park, D. J. Jang,
B. M. Medina, J. Gierschner and S. Y. Park, J. Am. Chem. Soc., 2009,
131, 14043.
9 R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam, P. E. L. G.
`
Leclere, R. P. Sijbesma, E. W. Meijer and A. P. H. J. Schenning, J. Am.
Chem. Soc., 2009, 131, 833.
10 S. Brovelli, F. Meinardi, G. Winroth, O. Fenwick, G. Sforazzini,
M. J. Frampton, L. Zalewski, J. A. Levitt, F. Marinello, P. Schiavuta,
K. Suhling, H. L. Anderson and F. Cacialli, Adv. Funct. Mater., 2010,
20, 272.
11 S. S. Babu, J. Aimi, H. Ozawa, N. Shirahata, A. Saeki, S. Seki,
¨
A. Ajayaghosh, H. Mohwald and T. Nakanishi, Angew. Chem., Int.
Ed., 2012, 51, 3391.
also achieved from two fluorescence colours which are in our case, 12 C. Vijayakumar, V. K. Praveen and A. Ajayaghosh, Adv. Mater., 2009,
21, 2059; C. Giansante, G. Raffy, C. Schafer, H. Rahma, M. T. Kao,
A. G. L. Olive and A. Del Guerzo, J. Am. Chem. Soc., 2011, 133, 316.
13 K.-P. Tseng, F.-C. Fang, J.-J. Shyue, K.-T. Wong, G. Raffy, A. Del Guerzo
however, cyan-blue and red (Fig. 3b), and not the previously
reported blue and orange combination.
It is interesting to note that common white-light emitting
diodes (WLEDs) are based on the same colour ‘‘design’’ principle,
i.e. a more narrow but quite intense blue emission band com-
bined with a second broad orange-red emission band. The
major difference, however, is that in the macroscopic WLED
the conversion of blue light from a GaN LED (lmax = 465 nm) is
achieved by a conventional absorption process by a Ce3+:YAG
phosphor whilst the energy transfer by FRET in our micellar
nanosystem is a resonant quantum mechanical process. Also
based on size, our micellar nanobulbs are more related to
quantum dots than to the macroscopic devices.
and D. M. Bassani, Angew. Chem., Int. Ed., 2011, 50, 7032.
14 X. Zhang, S. Rehm, M. M. Safont-Sempere and F. Wu¨rthner,
Nat. Chem., 2009, 1, 623.
¨
15 D. Gorl, X. Zhang and F. Wu¨rthner, Angew. Chem., Int. Ed., 2012,
51, 6328.
16 X. Zhang, Z. Chen and F. Wu¨rthner, J. Am. Chem. Soc., 2007, 129,
4886.
17 F. C. De Schryver, P. Collart, J. Vandendriessche, R. Goedeweeck,
A. Swinnen and M. Van der Auweraer, Acc. Chem. Res., 1987, 20, 159;
J. Vandendriessche, P. Palmans, S. Toppet, N. Boens, F. C. De Schryver
and H. Masuhara, J. Am. Chem. Soc., 1984, 106, 8057; J. Vandendriessche,
M. Van der Auweraer and F. C. De Schryver, Bull. Soc. Chim. Belg.,
1985, 94, 991.
18 B. L. Bales, L. Messina, A. Vidal, M. Peric and O. R. Nascimento,
J. Phys. Chem. B, 1998, 102, 10347.
19 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press,
New York, 1999.
To quantify the partial energy transfer and the white light
fluorescence phenomenon, we calculated the efficiency of FRET
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.