would significantly enhance the two-photon cross section.
Dihexylamino group has been employed as the terminal
donor to improve the solubility. We now report that 1-5
show large two-photon cross sections over a wide range of
wavelengths.
Scheme 1
Figure 1.
a variety of donor-acceptor substituents (Figure 1) and
measured the δTPA values by using the femtosecond (fs)
fluorescence method. We were interested in learning whether
the presence of additional donors and extended conjugation
(15) (a) Albota, M.; Beljonne, D.; Br e´ das, J.-L.; Ehrlich, J. E.; Fu, J.-
Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.;
McCord-Maughon, D.; Perry, J. W.; R o¨ ckel, H.; Rumi, M.; Subramaniam,
G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653. (b) Rumi,
M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-
Maughon, D.; Parker, T. C.; R o¨ ckel, H.; Thayumanavan, S.; Marder, S.
R.; Beljonne, D.; Br e´ das, J.-L. J. Am. Chem. Soc. 2000, 122, 9500. (c)
Pond, S. J. K.; Rumi, M.; Levin, M. D.; Parker, T. C.; Beljonne, D.; Day,
M. W.; Br e´ das, J.-L.; Marder, S. R.; Perry, J. W. J. Phys. Chem. A. 2002,
Synthesis of 1-5 is shown in Scheme 1. Sandmeyer
reaction of 2,6-diaminoanthraquinone followed by the reduc-
tive alkylation afforded A in 67% overall yield. Compound
2 was synthesized by Heck coupling between A and 4-(p-
dihexylaminostyryl)styrene (C). To prepare 1 and 3-5, B1
and B2 were reacted with appropriate benzaldehyde deriva-
tives. The structures of 1-5 were unambiguously character-
ized by H and C NMR and elemental analysis (see
Supporting Information).
The molar absorptivity spectra for 1-5 in toluene are
displayed in Figure 2. The peak positions of absorption and
1
06, 11470. (d) Zojer, E.; Beljonne, D.; Kogej, T.; Vogel, H.; Marder, S.
R.; Perry, J. W.; Br e´ das, J. L. J. Chem. Phys. 2002, 116, 3646. (e) Beljonne,
D.; Wenseleers, W.; Zojer, E.; Shuai, Z.; Vogel, H.; Pond, S. J. K.; Perry,
J. W.; Marder, S. R.; Bredas, J. L. AdV. Funct. Mater. 2002, 12, 631. (f)
Strehmel, B.; Sarker, A. M.; Detert, H. ChemPhysChem 2003, 4, 249.
(16) (a) Chung, S.-J.; Kim, K.-S.; Lin, T.-C.; He, G. S.; Swiatkiewicz,
1
13
J.; Prasad, P. N. J. Phys. Chem. B. 1999, 103, 10741. (b) He, G. S.; Yuan,
L.; Cheng, N.; Bhawalkar, J. D.; Prasad, P. N.; Brott, L. L.; Clarson, S. J.;
Reinhardt, B. A. J. Opt. Soc. Am. B 1997, 14, 1079. (c) Macak, P.; Luo,
Y.; Norman, H.; Ågren, H. J. Chem. Phys. 2000, 113, 7055. (d) Kim, O.-
K.; Lee, K.-S.; Woo, H. Y.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.; Prasad,
P. N. Chem. Mater. 2000, 12, 284. (e) Adronov, A.; Fr e´ chet, J. M.; He, G.
S.; Kim, K.-S.; Chung, S.-J.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater.
2
000, 12, 2838. (f) Maciel, G. S.; Kim, K.-S.; Chung, S.-J.; Swiatkiewicz,
J.; He, G. S.; Prasad, P. N. J. Pys. Chem. B. 2001, 105, 3155. (g) Chung,
S.-J.; Lin, T.-C.; Kim, K.-S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N.;
Baker, G. A.; Bright, F. V. Chem. Mater. 2001, 13, 4071. (h) Kannan, R.;
He, G. S.; Lin, T.-C.; Prasad, P. N.; Vaia, R. A.; Tan, L.-S. Chem. Mater.
2
004, 16, 185.
17) (a) Ventelon, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Chem.
(
Commun. 1999, 2055. (b) Ventelon, L.; Charier, S.; Moreaux, L.; Mertz,
J.; Blanchard-Desce, M. Angew. Chem., Int. Ed. 2001, 40, 2098. (c) Mongin,
O.; Porres, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2002,
4
, 719. (d) Mongin, O.; Brunel, J.; Porr e` s, L.; Blanchard-Desce, M.
Tetrahedron. Lett. 2003, 44, 8121. (e) Mongin, O.; Porr e` s, L.; Katan, C.;
Pons, T.; Mertz, J.; Blanchard-Desce, B. Tetrahedron. Lett. 2003, 44, 8121.
(
f) Porres, L.; Mongin, O.; Katan, C.; Charlot, M.; Pons, T.; Mertz, J.;
Blanchard-Desce, M. Org. Lett. 2004, 6, 47.
18) (a) Lee, W.-H.; Cho. M.; Jeon, S.-J.; Cho, B. R. J. Phys. Chem.
000, 104, 11033. (b) Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y.-S.; Lee,
Y.-K.; Jeon, S.-J.; Choi, J.-H.; Lee, H.; Cho, M. J. Am. Chem. Soc. 2001,
23, 10039. (c) Lee, W.-H.; Lee, H.; Kim, J.-A.; Choi, J.-H.; Cho, M.;
(
2
1
Jeon, S.-J.; Cho, B. R. J. Am. Chem. Soc. 2001, 123, 10658. (d) Cho, B.
R.; Piao, M. J.; Son, K. H.; Lee, S. H.; Yoon, S. J.; Jeon, S.-J.; Choi, J.-H.;
Lee, H.; Cho, M. Chem. Eur. J. 2002, 8, 3907. (e) Yoo, J.; Yang, S. K.;
Jeong, M.-Y.; Ahn, H. C.; Jeon, S.-J.; Cho, B. R. Org. Lett. 2003, 5, 645.
Figure 2. Molar absorptivity spectra of 1-5 in toluene.
(f) Yang, W. J.; Kim, D. Y.; Jeong, M.-Y.; Kim, H. M.; Jeon, S.-J.; Cho,
B. R. Chem. Commun. 2003, 2618. (g) Lee, H. J.; Sohn, J.; Hwang, J.;
Park, S. Y.; Choi, H.; Cha, M. Chem. Mater. 2004, 16, 456. (h) Yang, W.
J.; Kim, C. H.; Jeong, M.-Y.; Lee, S. K.; Piao, M. J.; Jeon, S.-J.; Cho, B.
R. Chem. Mater. 2004, 16, 2783. (i) Kim, H. M.; Jeong, M.-Y.; Ahn, H.
C.; Jeon, S.-J.; Cho, B. R. J. Org. Chem. 2004, 69, 5749.
emission spectra are summarized in Table 1. Interestingly,
(1)
λ
of 1 and 4 are blue shifted by approximately 30-50
max
(19) (a) Liu, Z. Q.; Fang, Q.; Wang, D.; Gang, X.; Yu, W. T.; Shao,
nm from those of the corresponding 2,6-bis(p-dihexylami-
Z.-S.; Jiang, M.-H. Chem. Commun. 2002, 2900. (b) Liu, Z. Q.; Fang, Q.;
Wang, D.; Cao, D. X.; Xue, G.; Yu, W. T.; Lei, H. Chem. Eur. J. 2003, 9,
nostyryl)anthracene derivatives (D and E), despite the
1
8f
extended conjugation (Table 1). This could be explained,
if the structures of 1-5 are significantly distorted to hinder
the effective conjugation. In addition, there are several peaks
5
074. (c) Liu, Z. Q.; Fang, Q.; Cao, D.-X.; Wang, D.; Xue, G.-B. Org.
Lett. 2004, 6, 2933.
20) (a) Iwase, Y.; Kamada, K.; Ohta, K.; Kondo, K. J. Mater. Chem.
003, 13, 1575. (b) Ogawa, K.; Ohashi, A.; Koboke, Y.; Ohta, K. J. Am.
Chem. Soc. 2003, 125, 13356.
(
2
(
1)
near λ
in the absorption spectra. This indicates an
max
324
Org. Lett., Vol. 7, No. 2, 2005