LETTER
Plant-Derived Octahydronaphthalenes
621
for long periods (weeks), and to heating (50 °C) in deutero-
benzene under an oxygen atmosphere for several days.
Given the co-isolation of brombyins I (1), IV (4), and V
D. J.; Vederas, J. C. J. Org. Chem. 1996, 61, 2613.
(c) Jung, S. H.; Lee, Y. S.; Park, H.; Kwon, D.-S.
Tetrahedron Lett. 1995, 36, 1051. (d) Craig, D.; Geach, N.
J.; Pearson, C. J.; Salwin, A. M. Z.; White, A. J. P.;
Williams, D. J. Tetrahedron 1995, 51, 6071. (e) Craig, D.;
Fischer, D. A.; Kemal, O.; Marsh, A.; Plessner, T.; Salwin,
A. M. Z.; Williams, D. J. Tetrahedron 1991, 47, 3095.
(
5) this would seem to rule out the possibility that they are
all generated during isolation, unless the latter compounds
arise via a different pathway.
(
f) Roush, W. R.; Essenfeld, A. P.; Warmus, J. S.
It could also be that they are simply formed by Diels–
Alder cycloaddition of triene 25 in a polar protic medium
at ambient temperatures, and that the endo-diastereoiso-
mer [brombyin III (3)] is selectively degraded. The isola-
tion of brombyins I (1), IV (4), and V (5) would support
this latter hypothesis as they are most likely derived from
brombyin III (3).
Tetrahedron Lett. 1987, 28, 2447. (g) Funk, R. L.; Zeller,
W. E. J. Org. Chem. 1982, 47, 180. (h) Roush, W. R.;
Gillis, H. R. J. Org. Chem. 1982, 47, 4825. (i) Roush, W.
R.; Hall, S. E. J. Am. Chem. Soc. 1981, 103, 5200.
(8) Wang, K.; Chu, K.-H. J. Org. Chem. 1984, 49, 5175.
(9) For a closely related sequence of transformations, see:
Roush, W. R.; Sciotti, R. J. J. Am. Chem. Soc. 1994, 116,
6
457.
The relative amounts of cyclostachines A and B (6a and
(
(
10) (a) Strunz, G. M.; Finlay, H. J. Can. J. Chem. 1996, 74, 419.
(b) Nagumo, S.; Matsukuma, A.; Suemune, H.; Sakai, K.
Tetrahedron 1993, 49, 10501.
1
8
7
a) and cyclopiperstachine (7b) isolated from Piper tri-
chostachyon also fit best with product ratios arising from
a thermal Diels–Alder reaction in a nonpolar medium. In
this instance it is difficult to envisage how the tempera-
tures required could be achieved naturally, although this
possibility cannot be completely excluded. It is also very
unlikely that these are artifacts of isolation (cold percola-
tion with hexane) and so it seems most probable that these
natural products are not derived directly from Diels–Alder
cycloaddition of trienes 27 and 28.
11) A solution of aldehyde 16 (4.00 g, 22.7 mmol) in anhyd THF
(100 mL) was placed under an argon atmosphere and cooled
to 0 °C. BF ·OEt (21.0 mL, 162 mmol) was added dropwise
3
2
and the mixture stirred for 10 min. A solution of cyclo-
hexanone (2.40 mL, 22.7 mmol) in anhyd THF (50 mL) was
then added over 20 min. The mixture was then allowed to
warm to r.t. and stirred for a further 30 min. Propan-1,3-diol
(8.60 mL, 119 mmol) was then added and the mixture stirred
for 12 h before being quenched by pouring onto sat. aq
Na CO (250 mL). The aqueous layer was extracted with
2
3
Et O (3 × 150 mL), and the combined organics were washed
2
Acknowledgment
sequentially with sat. aq Na
2
CO
3
(2 × 150 mL) and brine
(
2 × 150 mL). The organic phase was then dried (MgSO ),
4
Financial support for this work was provided by GSK, EPSRC, and
the University of Nottingham.
filtered, and concentrated under reduced pressure. The
residue was purified by chromatography on silica gel (2:1
increasing to 1:1 PE–EtOAc) to give diene 20 (2.64 g, 7.95
mmol, 35%) as a pale yellow oil. R = 0.16 (2:1 PE–EtOAc).
f
References and Notes
–1 1
IR (neat): nmax = 3435, 2930, 1731 cm . H NMR (500 MHz,
CDCl ): d = 6.92 (1 H, d, J = 1.5 Hz, ArH), 6.80 (1 H, dd,
(
1) Parsons, I. C.; Gray, A. I.; Hartley, T. G.; Skelton, B. W.;
3
J = 8.0, 1.5 Hz, ArH), 6.74 (1 H, d, J = 8.0 Hz, ArH), 6.58 (1
H, dd, J = 15.5, 10.5 Hz, CH=CHAr), 6.36 (1 H, d, J = 15.5
Waterman, P. G.; White, A. H. J. Chem. Soc., Perkin Trans.
1
1992, 645.
(
(
2) Parsons, I. C.; Gray, A. I.; Hartley, T. G.; Waterman, P. G.
Hz, C=CHAr), 6.17 (1 H, dd, J = 15.5, 10.5 Hz, CH=CHCH2),
5
.94 (2 H, s, OCH O), 5.75 (1 H, dt, J = 15.5, 7.0 Hz,
Phytochemistry 1993, 33, 479.
2
C=CHCH ), 4.24 (2 H, t, J = 6.0 Hz, CH OCO), 3.69 (2 H,
3) It is also conceivable that brombyin IV(4) could arise via
autoxidation of 2, followed by epimerization at the ring
junction.
2
2
t, J = 6.0 Hz, CH OH), 2.34 (2 H, t, J = 7.5 Hz, CH CO), 2.16
2
2
(
2 H, dt, J = 7.0, 7.0 Hz, CH CH=C), 1.87 (2 H, tt, J = 6.0,
2
6
.0 Hz, CH CH OH), 1.66 (2 H, tt, J = 7.5, 7.5 Hz, CH ),
2 2 2
(
4) (a) Joshi, B. S.; Viswanathan, N.; Gawad, D. H.;
Balakrishnan, V.; von Philipsborn, W.; Quick, A.
Experientia 1975, 31, 880. (b) Joshi, B. S.; Viswanathan,
N.; Gawad, D. H.; Balakrishnan, V.; von Philipsborn, W.
Helv. Chim. Acta 1975, 58, 2295.
1
3
1.46 (2 H, tt, J = 7.5, 7.0 Hz, CH2). C NMR (125 MHz,
CDCl ): d = 174.3 (CO), 148.1 (C), 147.0 (C), 134.3 (CH),
3
1
1
32.2 (C), 131.0 (CH), 130.0 (CH), 127.7 (CH), 121.0 (CH),
08.4 (CH), 105.4 (CH), 101.1 (CH ), 61.3 (CH ), 59.3,
2
2
(
(
[
CH ), 34.2 (CH ), 32.5 (CH ), 31.8 (CH ), 28.9 (CH ), 24.6
(
5) (a) Viswanathan, N.; Balakrishnan, V.; Joshi, B. S.;
von Philipsborn, W. Helv. Chim. Acta 1975, 58, 2026.
2
2
+
2
2
2
+
CH ). MS: (ES ): m/z (%) = 355 (100) [M + Na ], 333 (35)
2
+
+
+
M + H ]. MS (ES ): m/z calcd for C H O : 333.1697;
(
b) Joshi, B. S.; Viswanathan, N.; Gawad, D. H.;
von Philipsborn, W. Helv. Chim. Acta 1975, 58, 1551.
c) Viswanathan, N.; Balakrishnan, V.; Joshi, B. S.;
von Philipsborn, W. Helv. Chim. Acta 1975, 58, 220.
d) Joshi, B. S.; Viswanathan, N.; Gawad, D. H.;
Balakrishnan, V.; von Philipsborn, W. Helv. Chim. Acta
975, 58, 170.
19 25
5
+
found: 333.1704 [M + H ].
(
(
12) Aronovitch, C.; Mazur, Y. J. Org. Chem. 1985, 50, 149.
13) Diels–Alder reactions involving substrates of this type
would be expected to have highly asynchronous transition
states. For further discussion, see: (a) Raimondi, L.; Brown,
F. K.; Gonzalez, J.; Houk, K. N. J. Am. Chem. Soc. 1992,
(
(
1
114, 4796. (b) Wu, T.-C.; Houk, K. N. Tetrahedron Lett.
(
(
6) (a) Lygo, B.; Bhatia, M.; Cooke, J. W. B.; Hirst, D. J.
Tetrahedron Lett. 2003, 44, 2529. (b) Lygo, B.; Hirst, D. J.
Synthesis 2005, 3257.
1985, 26, 2297. (c) Wu, T.-C.; Houk, K. N. Tetrahedron
Lett. 1985, 26, 2293.
(
(
14) Doncaster, J. R.; Ryan, H.; Whitehead, R. C. Synlett 2003,
7) For other examples of thermal IMDA reactions involving
651.
1,7,9-decatrienes, which illustrate typical reaction
15) Reactions in water alone were irreproducible due to
insolubility of the substrate and product.
conditions for a variety of dienophiles, see: (a) Williams,
D. R.; Brugel, T. A. Org. Lett. 2000, 2, 1023. (b) Witter,
Synlett 2010, No. 4, 618–622 © Thieme Stuttgart · New York