Table 1 Polynorbornene coating on SWNTsa
a cylindrical object at the molecular level. While the thickness
of the polynorbornene coatings on SWNTs increases with
increasing monomer concentrations as predicted (Table 1,
entries 4–7), it does not exhibit expected behavior with
increasing polymerization time (Table 1, entries 1–4). Reaction
times longer than 5–10 min, in fact, result in thinner coatings
until there is virtually none at 120 min. This may be due in part
to a decreasing ability of the pyrenyl group to continue to
effectively anchor the polymer chain onto the SWNT while
solubilization of the polymer becomes increasingly more
energetically favorable as it grows longer and longer. Further
efforts are directed at studying the effects that variables such as
polymer desorption can have on the polymer thickness. To
resolve this issue, we are currently exploring other polymeriza-
tion reactions on the sidewalls of SWNTs with polymers that are
less soluble in the reaction solvents.
Polym.
[Norbornene]/M time/min
Coating
thickness/nm
Entry
Pathway
1
2
3
4
5
6
7
8
B
B
B
B
B
B
B
A
A
B
B
0.5
0.5
0.5
0.5
0.25
0.10
0.05
0.01
0.5
120
60
20
5
5
5
None
< 5
< 5
10–20
< 5
< 5
None
None
None
5–10
5–10
5
b
25
25
1
b
9
c
1
1
a
0
0.01
0.01
c
1
5
2 2
Conditions: SWNTs on Au TEM grids. [4] ≈ 25 mM (CH Cl ), 2 h
b
incubation time, room-temperature polymerization, toluene solution. 2 (5
In conclusion, we have developed a flexible methodology for
the non-covalent functionalization of SWNTs with organic
polymer employing ring-opening metathesis polymerization.
The authors thank DARPA-MTO for funding (Grant
c
2
mM); 5 (10 mM). SiO flat substrates.
with Cl
tions of various NBE concentrations (Table 1, entries 8 and
).
Functionalization of as-grown SWNTs (using 10 mM NBE
solutions) deposited onto SiO substrates utilizing ferritin-
derived catalysts22 yielded samples suitable for AFM imaging
tapping mode). A representative nanotube of approximate
2 3 2
(PCy ) RuNCHPh (5) followed by exposure to solu-
#
N66001-02-1-8911), and Prof. Ken Wagener (U. of Florida)
for a gift of benzylidene 5. The contributions of Dr Wenhong
Fan and Mr. Yiming Li are highly appreciated.
9
2
(
Notes and references
diameter = 1.4 nm is shown in Fig. 2(a); Fig. 2(b) shows a
PNBE-coated SWNT (Table 1, entry 11) of approximate
diameter = 9.1 nm, corresponding to a polymer coating of ca.
‡
SWNTs on TEM microgrids21 and silicon oxide22 substrates were
prepared in a manner previously described. See ESI† for a detailed
experimental description.
7.7 nm, as determined by the respective cross-sectional height
profiles. As observed in the AFM image, the SiO surface was
2
1
S. Iijima, Nature, 1991, 354, 56.
essentially free of PNBE, which provides further support for the
high selectivity of the functionalization step using polycyclic
aromatics.
A series of control experiments was incorporated into our
study as a probe for specific physisorption of the pyrenyl group
as the functionalization mechanism. For example, no polymer
was observed when the SWNTs were exposed to solutions of
ruthenium benzylidene 5 instead of the pyrenyl-functionalized
alkylidenes. Similarly, exposure of the SWNTs-containing
grids to solutions of polymer chains already grown using either
2 J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho and H. Dai,
Science, 2000, 287, 622.
3 J. Kong, M. Chapline and H. Dai, Adv. Mater., 2001, 13, 1384.
4 R. J. Chen, Y. G. Zhang, D. Wang and H. Dai, J. Am. Chem. Soc., 2001,
1
23, 3838.
M. Shim, N. Wong Shi Kam, R. J. Chen, Y. Li and H. Dai, Nano Lett.,
002, 2, 285.
5
2
6
7
A. Hirsch, Angew. Chem., Int. Ed., 2002, 41, 1853.
J. Chen, M. A. Hamon, H. Hu, Y. S. Chen, A. M. Rao, P. C. Eklund and
R. C. Haddon, Science, 1998, 282, 95.
8 J. L. Bahr, J. P. Yang, D. V. Kosynkin, M. J. Bronikowski, R. E. Smalley
and J. M. Tour, J. Am. Chem. Soc., 2001, 123, 6536.
9 M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R.
Weiss and F. Jellen, Angew. Chem., Int. Ed., 2001, 40, 4002.
0 Y. P. Sun, W. J. Huang, Y. Lin, K. F. Fu, A. Kitaygorodskiy, L. A.
Riddle, Y. J. Yu and D. L. Carroll, Chem. Mater., 2001, 13, 2864.
1 A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong,
X. Yang, S. W. Chung, H. Choi and J. R. Heath, Angew. Chem., Int. Ed.,
4
or 5 as initiators resulted in an almost negligible deposition of
polymer on the nanotube surface.
We have begun to study the thickness dependence of the
PNBE coating on the SWNT walls as a function of various
polymerization variables. Such understanding, key to develop-
ing applications such as chemo- and biosensors, should also
reveal interesting fundamental information regarding the geo-
metrics (e.g. linearity) of chain growth and organization around
1
1
2
001, 40, 1721.
1
2 B. McCarthy, J. N. Coleman, R. Czerw, A. B. Dalton, H. J. Byrne, D.
Tekleab, P. Iyer, P. M. Ajayan, W. J. Blau and D. L. Carroll,
Nanotechnology, 2001, 12, 187.
1
1
3 Y. Lin, A. M. Rao, B. Sadanadan, E. A. Kenik and Y. P. Sun, J. Phys.
Chem. B, 2002, 106, 1294.
4 M. J. OAConnell, P. Boul, L. M. Ericson, C. Huffman, Y. H. Wang, E.
Haroz, C. Kuper, J. Tour, K. D. Ausman and R. E. Smalley, Chem. Phys.
Lett., 2001, 342, 265.
1
1
1
1
5 M. Gao, S. M. Huang, L. M. Dai, G. Wallace, R. P. Gao and Z. L. Wang,
Angew. Chem., Int. Ed., 2000, 39, 3664.
6 C. Detrembleur, C. Jerome, M. Claes, P. Louette and R. Jerome, Angew.
Chem., Int. Ed., 2001, 40, 1268.
7 A. Juang, O. A. Scherman, R. H. Grubbs and N. S. Lewis, Langmuir,
2
001, 17, 1321.
8 N. Y. Kim, N. L. Jeon, I. S. Choi, S. Takami, Y. Harada, K. R. Finnie,
G. S. Girolami, R. G. Nuzzo, G. M. Whitesides and P. E. Laibinis,
Macromolecules, 2000, 33, 2793.
1
9 N. L. Jeon, I. S. Choi, G. M. Whitesides, N. Y. Kim, P. E. Laibinis, Y.
Harada, K. R. Finnie, G. S. Girolami and R. G. Nuzzo, Appl. Phys. Lett.,
1
999, 75, 4201.
2
2
0 M. Weck, J. J. Jackiw, R. R. Rossi, P. S. Weiss and R. H. Grubbs, J. Am.
Chem. Soc., 1999, 121, 4088.
1 Y. Zhang, N. Franklin, R. J. Chen and H. Dai, Chem. Phys. Lett., 2000,
3
31, 35.
Fig. 2 Atomic force microscopy of (a) a non-functionalized SWNT and (b)
a SWNT coated with polynorbornene (Table 1, entry 11).
22 W. Kim, H. C. Choi, M. Shim, Y. M. Li, D. Wang and H. Dai, Nano
Lett., 2002, 2, 703.
CHEM. COMMUN., 2003, 190–191
191