Histidine-Containing Catalytic Peptide Dendrimers
peptide is topologically forced to adopt a globular shape where
intramolecular interactions between amino acids are favored over
intermolecular interactions leading to aggregation. The dendritic
architecture thus circumvents the protein folding problem
4
encountered when designing proteins from linear peptides,
which must be addressed with complex combinatorial search
5
algorithms. Dendritic peptides consisting of branched lysine
2d,e
had been investigated previously for multiple antigenic display.
(
1) (a) Newkome, G. R.; Moorefield, C. N.; V o¨ gtle, F. Dendritic
Molecules: Concepts, Synthesis, PerspectiVes; VCH: Weinheim, Germany,
996. (b) Newkome, G. R.; Moorefield, C. N.; V o¨ gtle, F. Dendritic
Molecules: Concepts, Synthesis, Applications; VCH: Weinheim, Germany,
001. (c) V o¨ gtle, F.; Schalley, C. A., Eds. Dendrimers V: Functional and
1
2
Hyperbranched Building Blocks, Photophysical Properties and Applications
in Materials and Life Science; Topics in Current Chemistry, No. 228;
Springer-Verlag: Berlin, Germany, 2003. (d) V o¨ gtle, F.; Schalley, C. A.,
Eds. Dendrimers IV: Metal Coordination, Self-Assembly and Catalysis;
Topics in Current Chemistry, No. 217, Springer-Verlag: Berlin, Germany,
2
001. (e) Tomalia, D. A.; Dvornic, P. R. Nature 1994, 372, 617-618. (f)
Knapen, J. W. J.; van der Made, A. W.; de Wilde, J. C.; van Leeuwen, P.
W. N. M.; Wijkens, P.; Grove, D. M.; van Koten, G. Nature 1994, 372,
6
59-662. (g) Liang, C.; Fr e´ chet, J. M. J. Prog. Polym. Sci. 2005, 30, 385-
4
02. (h) Smith, D. K.; Tetrahedron 2003, 59, 3797-3798. (i) Grayson, S.
M.; Fr e´ chet, J. M. J. Chem. ReV. 2001, 101, 3819-3868. (j) Zeng, F.;
Zimmerman, S. C. Chem. ReV. 1997, 97, 1681-1712.
(2) For peptide dendrimers: (a) Crespo, L.; Sanclimens, G.; Pons, M.;
Giralt, E.; Royo, M.; Albericio, F. Chem. ReV. 2005, 1663-1681. (b)
Cloninger, M. J. Curr. Opin. Chem. Biol. 2002, 6, 742-748. (c) Crespo,
L.; Sanclimens, G.; Montaner, B.; P e´ rez-Tom a´ s, R.; Royo, M.; Pons, M.;
Albericio, F.; Giralt, E. J. Am. Chem. Soc. 2002, 124, 8876-8863. (d)
Sadler, K.; Tam, J. P. ReV. Mol. Biotechnol. 2002, 90, 195-229. (e) Tam,
J. P.; Lu, Y.-A.; Yang, J.-L. Eur. J. Biochem. 2002, 269, 923-932. (f)
Higashi, N.; Koga, T.; Niwa, M. ChemBioChem 2002, 3, 448-454. (g)
Boas, U.; Sontjens, S. H. M.; Jensen, K. J.; Christensen, J. B.; Meijer, E.
W. ChemBioChem 2002, 3, 433-439. (h) Kinberger, G. A.; Welbo, C.;
Goodman, M. J. Am. Chem. Soc. 2002, 124, 15162-15163. (i) Tung, C.-
H.; Mueller, S.; Weissleder, R. Bioorg. Med. Chem. 2002, 10, 3609-3614.
FIGURE 1. Architectures of peptide dendrimers. The variable amino
acids A are branched by using diamino acids B (b in the drawing)
such as L-2,3-diamino propionic acid (Dap). The peptide dendrimers
are synthesized by Fmoc-solid-phase peptide synthesis.
n
We prepared dendritic peptides by alternating proteinogenic
(j) Wimmer, N.; Marano, R. J.; Kearns, P. S.; Rakoczy, E. P.; Toth, I.
n
R-amino acids (A ) with a branching diamino acid (B) to form
Bioorg. Med. Chem. 2002, 12, 2635-2637. (k) Lagnoux, D.; Darbre, T.;
3
2
1
second generation dendrimers of type A 4(BA )2B-Cys-A ,
which were then dimerized by disulfide bond formation to obtain
third generation dendrimers (Figure 1). Dendrimers displaying
multiple histidine residues on their surface catalyzed the
hydrolysis of fluorogenic esters in aqueous media with enzyme-
like properties of substrate binding and multiple catalytic
Schmitz, M. L.; Reymond, J.-L. Chem., Eur. J. 2005, 11, 3941-3950.
(3) For catalytic dendrimers: (a) Kofoed, J.; Reymond, J.-L. Curr. Opin.
Chem. Biol 2005, 9, 656-664. (b) Kreiter, R.; Kleij, A. W.; Klein Gebbink,
R. J. M.; van Koten, G. Dendritic Catalysts; Topics in Current Chemistry,
No. 217; Springer-Verlag: Berlin, Germany, 2001; pp 163-199. (c)
Twyman, L. J.; King, A. S. H. M.; Martin, I. K. Chem. Soc. ReV. 2002, 31,
6
9-82. (d) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991-3023.
6
(e) Didier, A.; Heuze, K.; Gatard, S.; Mery, D.; Nlate, S.; Plault, L. AdV.
turnover.
Synth. Catal. 2005, 347, 329-338. (f) Garcia-Martinez, J. C.; Lezutekong,
R.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127, 5097-5103. (g) Lu, S.
M.; Alper, H. J. Am. Chem. Soc. 2005, 127, 14776-14784. (h) Tang, W.-
J.; Yang, N.-F.; Yi, B.; Deng, G.-J.; Huang, Y.-Y.; Fan, Q.-H. Chem.
Commun. 2004, 1378-1379. (i) Liang, C. O.; Helms, B.; Craig, J.; Frechet,
J. M. J. Chem. Commun. 2003, 2524-2525. (j) Weyermann, P.; Diederich,
F. HelV. Chim. Acta 2002, 85, 599-617. (k) Liu, L.; Breslow, R. J. Am.
Chem. Soc. 2003, 125, 12110-12111. (l) Bhyrappa, P.; Young, J. K.; Moore,
J. S.; Suslick, K. S. J. Am. Chem. Soc. 1996, 118, 5708-5711.
The convergent strategy by disulfide bond formation used in
these initial studies proved relatively cumbersome since it
required purification of the intermediate half-dendrimers before
dimerization. The dendrimer topology was therefore modified
to allow for a complete synthesis on solid support and a single
purification. Peptide dendrimers were prepared with two variable
amino acid positions per branch, corresponding to a dendron
2
1
(4) (a) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc.
of type B-A -A , allowing a similar number of variable amino
acid positions per dendrimer (Figure 1). In a preliminary study,
the peptide dendrimers A1-A4 were prepared with a repeating
Dap-His-Ser dendron (Dap ) L-2,3-diaminopropionic acid).
These dendrimers exhibited esterase-type catalytic activity, and
a strong positive dendritic effect was observed for the hydrolysis
1
994, 116, 4105-4106. (b) Raleigh, D. P.; Betz, S. F.; DeGrado, W. F. J.
Am. Chem. Soc. 1995, 117, 7558-7559. (c) Kortemme, T.; Ram ´ı rez-
Alvarado, M.; Serrano, L. Science 1998, 281, 253-256. (d) Karle, I. L.;
Das, C.; Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 3034-3037.
(
e) McDonnell, K. A.; Imperiali, B. J. Am. Chem. Soc. 2001, 123, 1002-
1
1
5
003. (f) Bolon, D. L.; Mayo, S. L. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
4274-14279. (g) Xing, G.; DeRose, V. J. Curr. Opin. Chem. Biol. 2001,
, 196-200. (h) Di Constanzo, L.; Wade, H.; Geremia, S.; Randaccio, L.;
7
of 8-acyloxy-1,3,6-pyrene trisulfonates 1-3 (Scheme 1). Herein
we report a synthetic and mechanistic study of 32 different
dendrimer mutants in this series, which establishes the robust-
ness of the peptide dendrimer synthesis and catalytic properties
observed. An automated parallel synthesis protocol was devel-
Pavone, V.; DeGrado, W. F.; Lombardi, A. J. Am. Chem. Soc. 2001, 123,
1
2794-12757. (i) Benson, D. E.; Haddy, A. E.; Hellinga, H. W.
Biochemistry 2002, 41, 3262-3269. (j) Wey, Y.; Hecht, M. H. Protein
Eng. Des. 2004, 17, 67-75. (k) Gibney, B. R.; Rabanal, F.; Skalicky, J. J.;
Wand, A. J.; Dutton, P. L. J. Am. Chem. Soc. 1997, 119, 2323-2324. (l)
Reedy, C. J.; Gibney, B. R. Chem. ReV. 2004, 104, 617-649.
(
5) (a) Moffet, D. A.; Hecht, M. H. Chem. ReV. 2001, 101, 3191-3203.
(6) (a) Esposito, A.; Delort, E.; Lagnoux, D.; Djojo, F.; Reymond, J.-L.
Angew. Chem., Int. Ed. 2003, 42, 1381-1383. (b) Lagnoux, D.; Delort, E.;
Douat-Casassus, C.; Esposito, A.; Reymond, J. L. Chem. Eur. J. 2004, 10,
1215-1226. (c) Douat-Casassus, C.; Darbre, T.; Reymond, J.-L. J. Am.
Chem. Soc. 2004, 126, 7817-7826.
(7) Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126,
15642-15643.
(
b) Bolon, D. N.; Voigt, C. A.; Mayo, S. L. Curr. Opin. Chem. Biol. 2002,
6
, 125-132. (c) Socolich, M.; Lockless, S. W.; Russ, W. P.; Lee, H.;
Gardner, K. H.; Ranganathan, R. Nature 2005, 437, 512-518. (d) Bradley,
P.; Misura. K. M.; Baker, D. Science 2005, 309, 1868-1871. (e)
Wunderlich, M.; Martin, A.; Staab, C. A.; Schmid, F. X. J. Mol. Biol. 2005,
3
51, 1160-1168.
J. Org. Chem, Vol. 71, No. 12, 2006 4469